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Multi-scale classification decodes the
complexity of the human E3 ligome
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E3 ubiquitin ligases are vital enzymes that define the ubiquitin code in cells.
Beyond promoting protein degradation to maintain cellular health, they also
mediate non-degradative processes like DNA repair, signaling, and immunity.
Despite their therapeutic potential, a comprehensive framework for under-
standing the relationships amongdiverse E3 ligases is lacking. Here, we classify
the “human E3 ligome”—an extensive set of catalytic human E3s—by integrat-
ing multi-layered data, including protein sequences, domain architectures, 3D
structures, functions, and expression patterns. Our classification is based on a
metric-learning paradigm and uses a weakly supervised hierarchical frame-
work to capture authentic relationships across E3 families and subfamilies. It
extends the categorization of E3s into RING, HECT, and RBR classes, including
non-canonicalmechanisms, successfully explains their functional segregation,
distinguishes betweenmulti-subunit complexes and standalone enzymes, and
maps E3s to substrates andpotential drug interactions. Our analysis provides a
global view of E3 biology, opening strategies for drugging E3-substrate net-
works, including drug repurposing and designing specific E3 handles.

Cells constantly modulate their proteomes in response to physiologi-
cal and environmental changes. The timely removal and turnover of
cellular proteins is integral to protein homeostasis1. In eukaryotes,
individual proteins, complexes, and large assemblies are degraded via
either autophagy or the ubiquitin-proteasome system (UPS)2. In
mammalian cells, ~80% of the cellular proteome is degraded through
the UPS1. In this pathway, the designated protein cargo is tagged with
ubiquitin (Ub) molecules through a series of enzymatic reactions,
marking them for degradation by the proteasome3. Following the
action of E1 and E2 enzymes, the E3 ligase brings both the E2–ubiquitin
complex and the substrate protein in proximity, allowing the transfer
of Ub from the E2 enzyme to a lysine residue on the target protein4,5.
This process is often repeated (poly-ubiquitination), resulting in

substrates with distinct types of Ub-chains. In UPS, for instance, K48-
linkedUb-chains are recognized byUb-binding domains (UBDs) on 19S
proteasomal particles, initiating the degradation of substrates1. In
autophagy, ubiquitination often serves as a necessary condition for
identifying substrates, conferring specificity6. Cargo components,
damaged organelles, and intracellular pathogens targeted for degra-
dation are often ubiquitinated. Further, autophagy receptors are
enriched in UBDs to recognize modified cargo components7 or
themselves strongly ubiquitinated to trigger aggregation of protein
assemblies in the cytosol and organellarmembranes8,9, thus enhancing
autophagic flux.

E3 ubiquitin ligases confer substrate specificity for ubiquitination.
They recognize distinct targets, operate in diverse cellular locations,
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and exert spatial control of protein turnover10,11. In addition to con-
trolling homeostatic processes, E3 ligases regulate immunity and
inflammation pathways12,13. Given their tissue-specific expressions and
association with developmental and metabolic syndromes, including
cancer progression, E3 ligases have emerged as promising candidates,
particularly for drugging previously undruggable targets14. In stark
contrast to E1 (~10) and E2 enzymes (~50), a substantial number of E3
ligases (~600) have been recognized in humans15,16. This count of
putative E3s stems fromvarious investigations: Li et al.17 identified ~617
potential human E3-encoding genes by conducting a genome-wide
search to detect RING (Really Interesting New Gene) finger catalytic
domains using hidden Markov models. Subsequently, Deshaies and
Joazeiro18 characterized ~300RING andU-box E3 ligases, whileMedvar
et al.19 documented ~377 E3 ligases, with a primary focus on confirmed
catalytic activity. Despite these efforts, many human E3 ligases have
been only partially characterized. A significant fraction remains
unexplored and hypothetical or unknown20. To date, those studied
exhibit extensive heterogeneity in their sequence, domain composi-
tion, 3D structure, subcellular localization, and tissue expression,
establishing them as one of the most diverse classes of enzymes.
Furthermore, several E3 ligases function as multi-subunit complexes
with varied substrate specificities modulated by specific receptors,
adaptors, and scaffold proteins21. The extensive variety and large
numbers of E3 ubiquitin ligases create a bottleneck for pattern
recognition and large-scale study. Therefore, detailed characterization
and analysis of the human E3 ligome—the complete set of E3 ubiquitin
ligases encoded by the human genome—is essential for a compre-
hensive understanding.

The current classification of the E3 ligases—based on the
ubiquitin-transfer mechanism—categorizes them into three main
classes: RING (Really InterestingNewGene), HECT (Homologous to the
E6AP Carboxyl Terminus), and RBR (RING-Between-RING) classes15.
This classification drastically oversimplifies the mechanistic diversity
of E3 ligases, compels the grouping of enzymes with hybrid char-
acteristics, and fails to accommodate emerging information on recent
and atypical ligases, limiting its overall utility18. A multi-scale classifi-
cation of the human E3 ligome offers a unique solution to tackle the
complexity and remarkable diversity inherent in these enzymes at
various scales. This organized approach can provide more accurate
and functional groupings, crucial for a nuanced understanding of
different E3 ligase families. Further, emerging patterns detected help
trace evolutionary relationships more effectively, revealing conserved
elements and adaptive changes that are not evident. Furthermore,
mapping essential information such as functional diversity, substrate-
specificities, and druggability onto the classification provides a global
view, guiding specific and directed investigations to fill in the missing
information.

Here, we systematically catalog all E3 ubiquitin ligases to build a
comprehensive and manually curated human E3 ligome. We then
encode the relationships between high-confidence E3 ligases using
multiple distance measures at various granular layers spanning the
molecular- and the systems-level organization. By amalgamating
selected distance measures from multiple layers into an optimized
emergent distance metric, we group all human E3 ligases into distinct
families and subfamilies. Our classification delineates features and
patterns specific to E3 ligase families, providing insights into their
organization. By combining CRISPR-Cas9 dropout screens and pro-
teomic analysis with functional enrichment analysis, we identify
essential E3s differentially regulated under stress conditions. We
demonstrate the utility of this unbiased classification by mapping the
existing state of knowledge on E3 ligase domain architecture, 3D
structure, function, substrate networks, and small molecule interac-
tions to gain generic and family-specific insights. The multiscale clas-
sification framework developed here embodies canonical and atypical
E3 mechanisms largely reflecting the ubiquitin code, offering a

comprehensive roadmap to navigate the vast landscape of E3 ligase
biology, laying the groundwork for future therapeutic applications.

Results
Assembly of the human E3 ligome
To comprehensively identify all E3 ligases in the human genome, we
conducted a census using datasets from previously published studies
and public repositories. By visualizing their overlaps, we found that all
existing datasets were largely inconsistent (Fig. 1a and Supplementary
Fig. 1a).Most strikingly, only 99 proteinswere consistently categorized
as human E3 ligases from all eight datasets. The low overlap in these
datasets reflects the diverse approaches and often variable definitions
used to collate E3 systems (Supplementary Table 1).We resolved these
conflicts by explicitly defining the catalytic components of E3 systems,
i.e., polypeptide sequences containing one or more catalytic
domains (C ={dc}, see “Methods”). Using this objective criterion
(fXi 2

S8
n= 1j9di 2 Cg; Supplementary Table 2) facilitated proper

annotation and targeted analysis of E3s. We found that 462 polypep-
tide sequences, across all datasets (

S8
n= 1An = 1448), containat least one

catalytic domain constituting the curated E3 ligome (Fig. 1b and Sup-
plementary Fig. 1b).

To substantiate our curation process, we defined a consensus
score for each protein based on its presence in various source datasets
(Fig. 1c).We found that the HECT and RBR classes of E3 ligases showed
high agreement across datasets (confidence score ≥ 0.6; orange and
purple bars). The RING class (green bars) had a broad distribution of
consensus scores indicative of annotation challenges. However, the
most significant discrepancy among the datasets (confidence score
≤ 0.25) was due to misannotated proteins. E1, E2, and other non-
catalytic components of E3 systems, such as receptors, scaffolds, and
adaptor proteins, were oftenmergedwith E3 ligases, accounting for an
additional 298 proteins, leaving 514 unclassified and 174 with no
domain annotations (Fig. 1b). Furthermore, several proteins obtained
from UniProt and BioGRID using keyword-based searches (Supple-
mentary Fig. 1c) were not included by others, have low consensus
scores, and remain unclassified and unannotated, excluding 688 pro-
teins from the curated E3 ligome (Fig. 1c, black bars). Our approach
thus minimized false positives and true negatives, includes high-
confidence catalytically active E3s and accounts for pseudo-E3 ligases
and other E3s with untested catalytic activities, providing a detailed
assessment of the completeness of the human E3 ligome (see Sup-
plementary Note 1).

To quantify the diversity of the human E3 ligome, wemapped the
sequence, structure, and functional features of individual E3s corre-
sponding to well-known E3 classes (RING, HECT, and RBR). We found
that the length distribution of the E3s is broad, ranging from 100 to
5000 residues (mean size = 635 residues; Fig. 1d). The average frac-
tional coverage of E3s annotatedwith unique domains is 37%, 42%, and
53% for RING, HECT, and RBR classes, respectively (Fig. 1e). Further-
more, on average, the RING, HECT, and RBR domains span 23%, 31%,
and 39% of their total lengths, respectively (Fig. 1f). By mapping
information from the Protein Data Bank (PDB), we found 2259 distinct
structures representing RING, HECT, and RBR-containing proteins
(2001+168+90), providing partial structural information for 51%
(208+21+8 unique UniProt records) of the E3 ligome (Fig. 1g). Analysis
of AlphaFold models revealed that for most E3s, the coverage of
structured domains is high, and the amount of intrinsic disorder is
generally low (pLDDT ≤ 50 covering only ≤ 10% E3 length; Supple-
mentary Fig. 1d). We quantified the functional diversity of the E3
ligome by retrieving the unique Gene Ontology (GO) annotations
corresponding to Biological Processes (BP), Cellular Component (CC),
and Molecular Function (MF). We annotated 96−100% of the E3s with
unique GO terms (Fig. 1h). The number of distinct GO terms captured
the diversity of functional assignments attributed to the three
E3 classes.
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Metric learning for classification of the human E3 ligome
To study the organization and relationships of proteins within the
human E3 ligome, we attempted to classify these enzymes using
multiple sequence alignment (MSA) followed by phylogenetic tree
construction. However, we obtained a low-qualityMSAwith numerous
gaps (Supplementary Fig. 2a), primarily due to (i) high sequence
divergence, (ii) numerous proteins with uneven length distributions,
(iii) inadequate alignment of conserved, catalytic domains, and (iv) an
extensive repertoire of domain architectures (Supplementary Fig. 2b).

To capture the complex relationships within the human E3
ligome, we used a machine-learning approach to learn an emergent
distance measure. Using a linear sum model, we combined multiple
distance measures with optimal weights to reproduce class-level
organization (partial ground truth) in hierarchical clustering (Fig. 2a).
We first computed twelve pairwise distance matrices for all E3 ligase

pairs (di
PQ where i = {1, ⋯ , 12}, for all P and Q ∈ E3 ligome; 12 × 462C2

distances) across distinct granular layers: primary sequence, domain

architecture, 3D structure, function, subcellular localization and
expressions (see “Methods”). These distances between ligase pairs are
widely distributed and capture their relationships across distinct
molecular- and systems-level hierarchies (Fig. 2b). Interestingly, most
distance measurements showed low correlations (Fig. 2c), suggesting
that they capture largely orthogonal information from the distinct
granularity layers. Only the three domain architecture-based distances

which quantify domain composition (dJac
PQ), domain order (dGKγ

PQ ), and

domain duplication (dDup
PQ ) are highly correlated (Pearson r ≥ 0.5).

Further, the 3D structure-based distance measure (dStr
PQ) is also posi-

tively correlated with domain composition and duplication distances
(Pearson r ≥ 0.5).

Next, to learn an emergent distance measure, DPQ, we combined
four individual distances (di

PQ), representative of E3 sequence, domain
composition, structural, and functional level organization, with
their appropriate weights (wi ∈ {0.05, ⋯ , 0.95} in 0.1 intervals).

Fig. 1 | Diversity of the human E3 ligome. a A visualization showing the inter-
sections of eight E3 ligases datasets (A1, ⋯ , A8) obtained from existing literature
andpublic repositories. Thematrix layout for all intersections of individualdatasets
is sorted by size. Filled circles and their corresponding bars indicate sets that are
part of the intersection and their sizes, respectively. Individual proteins (Xi) from
the all eight datasets

S8
n = 1An = 1448 annotated with one or more domains, di,

belonging to a set of well-studied catalytic components of E3 enzymes (C = {dc})
were compiled to form the high-confidence E3 ligome, fXi 2

S8
n= 1j9di 2 Cg. b Pie

chart showing the extent of protein annotations and filtering to identify the cata-
lytic and non-catalytic components of the human E3 ligome. c Distribution of
consensus scores for all annotated protein classes reflects cross-dataset

reproducibility on E3 ligase catalytic components. The distribution of (d) protein
lengths and annotation coverage for (e) all domains and (f) catalytic domains
highlights the heterogeneity of the E3 ligome. gDistribution of structural coverage
of the E3 ligome at class-level. Barplots (left axis) display the number of available
PDB structures for n = 208 RING, n = 21 HECT, and n = 8 RBR proteins. Violin plots
(right axis, min, max, median, and mean values with mirrored density estimates on
either side) represent distributions of fractional coverage forn= 2001 RING,n= 168
HECT, and n = 90 RBR structures. h The total number of unique GO terms asso-
ciated with E3 classes indicates their functional vista under biological process BP,
cellular component CC, and molecular functionMF ontologies. n-values on bars
indicate unique proteins with GO terms.
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These distances capture intrinsic molecular attributes and their rela-
tionships spanning the molecular scale. By uniformly sampling the
weights, we constructed 105 combination measures as a function of the
hyperparameter (fractional tree cutoff, h, between 0.05 and 0.95). By
simultaneously maximizing element-centric similarity22 of the emergent
hierarchical clusters resulting from combined measures, with partial
ground truth (weakly-supervised scheme, Fig. 2d), we optimized an
emergent distance measure (DPQ) with appropriate weights (bwi). We
found that the linear combination of distances provided clusters with
high element-centric similarity SEC compared to clusters obtained from
individual distances (Fig. 2e, black curve vs. colored).

Normalized Mutual Information (NMI) and Fowlkes–Mallows
Index (FMI) compare clustering assignments (various distance-

based vs. ground truth), but they are sensitive to cluster count
(determined by tree cutoff, h; Supplementary Fig. 3a). Therefore,
optimized weights bwi were obtained by averaging one hundred
realizations of hierarchical clustering with maximum SEC22. The
weights corresponding to maximum SEC initially varied and then
plateaued (at h ≥ 0.75; Fig. 2f), resulting in the construction of an
optimized emergent distance measure, DPQ (Eq. (1)). We found
that the relative influence of 3D structure, domain composition,
and sequence alignment (bwi ≥0:5) was more significant on the
final learned metric and its ability to reproduce class labels
accurately. Compared to the emergent distance measure, we
found variable tree topologies with poor overlap and highly
entangled trees for all four individual distances (Supplementary

Fig. 2 | Metric learning for E3 ligases. a Schematic of themetric learning process.
b Distribution of various pairwise distance measures spanning the molecular and
systems level organization. c Pearson correlation of distance measures indicate
orthogonality, mostly r ∈ (− 0.3, 0.3). Distances based on sequence alignment,
domain composition, 3D structure (catalytic), and molecular function (marked in
blue) are combined into an emergent distance (DPQ) with appropriate weights.d By

maximizing element-centric similarity, a measure of the overlap of emergent
hierarchical clusters (right) with the ground truth (left) (e) evaluates individual
metrics and their linear combinations. f Regression weights (mean± S.D.) corre-
sponding to the four relevant distances as a function of fractional tree cutoffh. 100
clusters with largest SEC were sampled at each value of h to estimate the
mean and S.D.
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Figs. 3b–e).

DPQ =0:43dMF
PQ +0:55dγ

PQ +0:60dJac
PQ +0:70dStr

PQ: ð1Þ

Organization of the human E3 ligome
Using the optimized emergent distance metric, DPQ (Eq. (1)), we con-
structed a scaled hierarchical tree classifying the human E3 ligome
(Fig. 3 and Supplementary Fig. 4a). To assess the validity of nodes,
branch stability, and the robustness of our classification, we resampled

Fig. 3 | Classification of the human E3 ligome. Unrooted hierarchical tree com-
puted using the optimized emergent distance metric DPQ (scaled branch lengths).
The RBR (purple), HECT (orange), and RING classes (blue/green/yellow) are parti-
tioned at h = 0.25 into 1, 2, and 10 families, respectively. Each cluster is defined by

shared sequence, domain-architectural (mapped), structural, and functional ele-
ments. Boxes show family information, i.e., family name, size, and subfamilies, with
representative examples. Grey-filled circles denote bifurcation nodes with ≥ 95%
bootstrap support, and * denotes families with a few class-level outliers (3/13).
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the emergent distance matrix (n = 500) and assigned bootstrap sup-
port at each branch point (Fig. 3, grey circles). The bootstrap support
for all nodes beyond tree cutoff, h > 0.15, is 95−100%, indicating a
stable branch pattern (Supplementary Fig. 4b) with a fixed tree
topology. At h ≤ 0.15, the bootstrap support for the nodes dropped
drastically. This allowed us to use a tree cutoff threshold, h = 0.25, to
parse the dendrogram and obtain robust and stable clusters with clear
family and subfamily patternswhile preserving RING-,HECT-, andRBR-
class segregation.

We identified thirteen distinct clusters or E3 families (h = 0.25).
At the class level, the E3 ligome is well segregated into ten RING
families (Fig. 3, blue to green colors; clockwise arrangement from
RING1 to RING10), two HECT (Fig. 3, top-branch; orange), and one
RBR family (Fig. 3, bottom-branch; purple). Each E3 family is sub-
divided into one or more subfamilies (Fig. 3, boxes) with distinct
patterns. Mapping domain architecture information onto the indi-
vidual leaves aids recognition of well-preserved sequence and
domain features, consistent with family and subfamily grouping, a
pattern more evident in the unscaled circular dendrogram of the E3
ligome (Supplementary Fig. 4a). Further, few heterogeneous famil-
ies are grouped more closely and emerge from single branches
(bootstrap support ≈ 90−95%; Supplementary Fig. 4b) hinting at
divergence of plausible superfamilies: (i) RBR and RING1–3 branch
(small E3s), (ii) RING7–9 branch (medium E3s), and (iii)
HECT2–RING10 branch (large E3s). This organization stems from the
central node that bifurcates the E3 ligome into two groups char-
acterized by average protein size (Fig. 3). The bottom branch dis-
plays six families with smaller E3s, while the top branch groups
seven larger E3 families.

The E3 family organization reflects mechanistic differences
(Supplementary Fig. 4c and Supplementary Table 3). The RING E3s
mediate the direct transfer of Ub to the substrate, while the RBR and
HECT E3s enable ubiquitin transfer via a two-step mechanism. The
RBR-containing E3s form a homogeneous cluster, highlighting their
conserved sequence and the TRIAD supra domain. Similarly, HECT-
domain-containing E3s are organized into twoclusters/families, HECT1
and HECT2. The HECT1 family is homogeneous and includes three
subfamilies: NEDD4-like, HERC, and otherHECT E3s. TheHECT2 family
contains a pureHECT E3 subfamily and anoutlier subfamily containing
large multi-domain RING-type E3s ( > 2000 residues) often with aty-
pical mechanisms (e.g., MYCBP2, RNF213, see Supplementary Note 2).
Themost abundant RING-domain-containing E3s are organized into 10
families, each characterized by further grouping related proteins into
distinct subfamilies with shared sequence elements, domain archi-
tectures, and structural features. For instance, the RING2 family com-
prises membrane-associated RING-CH-type domain (MARCH) E3
ligases (Fig. 3, bottom-right). This family includes all small MARCH E3
ligases characterized by their transmembrane domains and sequence
lengths below 500 amino acids. TRIM E3 ligases are exclusively limited
to two distinct families, RING5 and RING8, and feature the SPRY
domain (Fig. 3, bottom-left). E3 ligases containing BTB/POZ and Zn-
finger domain repeats are grouped into the RING6 family (Fig. 3,
upper-left).

Although our emergent metric largely maximizes pure and
homogeneous clusters (e.g., RBR, RING2, RING5, RING6, RING8, and
HECT1), heterogeneity often arises at the subfamily level, resulting in
sub-groupings of E3s with varied and unique domain architectures.
Isolated proteins (singletons) in the RING1, RING7, RING8, and RING9
families form distinct subfamily groupings, complicating pattern
detection. Only RING1, RING7, and HECT2 families display occasional
class-level outliers (Supplementary Table 3). SupplementaryNotes 3 to
15 describe each family structure in detail with information on sub-
family branching, characteristic features, and distinct patterns, along
with outliers providing a nuanced description (Supplementary
Figs. 5–17 and Supplementary Notes 3–15).

Functional segregation of the human E3 ligome
To evaluate the human E3 ligome, we conducted a CRISPR-Cas9
dropout screen of UPS genes, using cellular fitness as the main phe-
notype. We identified 53 catalytic and 32 non-catalytic E3 components
to be essential for cell fitness (FDR ≤0.05 and jlog2ðFCÞj≥ 1:0; Fig. 4a,
b). Notably, these essential E3swerepredominantly enriched in RING1/
4/7, and RING9 families, suggesting critical biological roles (Fig. 4a).
Several E2 enzymes and adaptors were also essential, reinforcing the
importance of the ubiquitin conjugation and multi-subunit E3s
(Fig. 4b). Overall, our CRISPR screen replicates correlated well with
DepMap data (Pearson r ≥ 0.5; Supplementary Fig. 18a). GO analysis of
53 essential E3s showed significant enrichment for nuclear compo-
nents and DNA damage, replication, and repair processes (Fig. 4c),
indicating their roles in genome integrity and nuclear regulation fun-
damental to cell survival. These findings point to essential E3 compo-
nents crucial for cell viability.

To understand the functional diversity of the human E3 ligome,
we filtered high-confidence GO terms and mapped them onto our
classification, enabling us to draw functional clusters and visualize
their networks across all three ontologies. This allowed recognition of
generic and family-specific functions (enriched, �log10ðpÞ≥ 2). At the
BP level, as expected, the network analysis revealed prominent core
functional sub-clusters associated with all terms containing “ubiquiti-
nation (Ub)” (Fig. 4e, Top). These BPs are shared across all families,
indicating their generality. Additional core clusters relate to innate
immunity, host-driven viral restriction, NF-κB regulation, and IL-17
signaling (Fig. 4d). Further, cooperative diverse non-degradative
functions such as regulation of gene expression, protein stability,
cell growth, and ERAD pathway are enriched within the E3 ligome (see
Supplementary Note 16).

Examining family-specific GO enrichment uncovered functional
specialization supported by experimental evidence (Fig. 4e, colored
triangles; Supplementary Table 4). For instance, the RBR family
members, RNF14, RNF144A, and PRKN, demonstrated specificity for
K6-linked-Ub (Fig. 4f, left). K6-linked chains flag stalled RNA-protein
cross-linked complexes (RNF14), DNA-sensing adaptor STING for
activation of interferon signaling (RNF144), and damaged mitochon-
dria for clearance (PRKN)23–25. Similarly, TRIM E3s (RING5) were sig-
nificantly enriched in antiviral innate immune response (Fig. 4f, right).
They regulate pattern recognition receptor activity in cells, such as
RIG-1 and MDA5-mediated responses26,27.

To test family-specific functions, we performed whole-cell pro-
teomics in response to cellular perturbations (EBSS and CPT treat-
ment) and monitored the differential expression of E3 ligases. The
cellular responses to EBSS and CPT treatments are broad and multi-
faceted, impinging on a wide range of BP functional clusters (Fig. 4e,
blue and orange triangles). 18/34 implicated E3s have direct evidence
linking them to starvation response pathways (Supplementary
Table 4). Notably,MGRN9 andBRCA1were also essential in ourCRISPR
screens (Fig. 4g, left). Our analysis revealed a differential expression
(p value ≤ 0.05) of the E3 ligases TRIM27/32, and UBR1 in addition to
key autophagy regulators SQSTM1, CALCOCO2, GABARAPL2, and
MAP1LC3B2, highlighting a coordinatedmodulation of the autophagic
machinery during starvation (Fig. 4g, right colored vs. blue). In con-
trast, the observed up-regulation of EIF4EBP1, a translational repressor
regulated by mTOR signaling28, and GDF15, a stress-responsive cyto-
kine involved in metabolic adaptation29, indicates activation of com-
plementary stress response pathways that may support cellular
survival. TRIM27/32 regulate autophagy initiation and selective
degradation pathways by ubiquitinating essential autophagy proteins
such as ULK1 and p62, thereby promoting autophagosome formation
and cargo recognition30–32.

Similarly, experimental evidence links 29/87 implicated E3s
directly to DNA damage response (DDR) (Supplementary Table 4), of
which 12 E3s turned out to be essential (e.g., TRAF3/7, MDM2; Fig. 4h,
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left). We found that the E3 ligases TRIM27, UHRF1, TNFAIP3, and
RNF168 were significantly down-regulated in response to CPT, while
UBR5 was up-regulated in addition to the control proteins (e.g., TOP1,
XRCC6, DDB1; Fig. 4h, right, colored vs. blue). TOP1, targeted by CPT,
forms covalent DNA-protein cross-links that cause replication-
associated double-strand breaks and trigger DDR33. In response, ubi-
quitin signaling, via RNF8/168-mediated K63-linked histone-Ub,
recruits DDR mediators like 53BP1, BRCA1, and RAD1834,35. UBR5 limits
Ub-signaling by degrading RNF168, ensuring DNA repair fidelity.

Further, UHRF1 promotes DDR by driving chromatin remodeling and
BRCA1 recruitment36. Additionally, UHRF1, RNF168, and RNF8 function
in DNA replication37. Together, these mechanisms underscore Ub-
signaling to maintain cellular homeostasis and genome integrity.

At the MF level, all E3s have “ubiquitin-protein ligase” activity
(Generic; Supplementary Fig. 18b). More than 20 MFs could be
attributed to family-specific domain architectures (Supplementary
Fig. 18d). The Zn-finger domains are also common to transcription
factors. For e.g., they equip E3s for p53 binding (RING3), histone-Ub
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(RING9), and unmethylated CpG binding (RING7). Other non-catalytic
E3 domainsmediate PPI interactions with actin, SH3-domains, Kinases,
and proteases. Distinct subcellular localization of E3s exerts spatial
control of protein-Ub (Supplementary Fig. 18c). Most E3 ligases are
cytosolic, which form an essential part of the “ubiquitin ligase com-
plexes” (CC: Generic). We find enriched E3 families for distinct CCs:
CD40 receptor, GID, and nBAF complexes (RING1); early endosomes
and lytic vacuoles (RING2). In total, we identified 17 unique cellular
components with distinct E3-specific enrichment patterns (Supple-
mentary Figs. 18e, 19a).

GO annotations from author/curator statements and electronic
methods—despite varying confidence levels—provide a rich, abundant
dataset of key testable hypotheses on E3 systems (Supplementary
Figs. 18f, 19a, and Supplementary Note 17). Publication counts for each
protein-specific annotation highlight knowledge gaps and pinpoint
well-studied and underexplored E3 systems (Supplementary Fig. 19b).

Interaction landscape of the human E3 ligome
E3 ligases can operate as standalone or multi-subunit enzymes. Com-
plex E3s consist of scaffolds, adaptors, and substrate receptors that
determine specificity, stability, and regulation21. For instance, RBX1
binds scaffolds (CUL1–CUL5) and anchors the E2 enzyme to form the
catalytic core for Ub transfer (Fig. 5a). Its interactions with various
cullins, adaptors, and receptors enable ~250 CRL configurations, pro-
viding modular regulation and substrate specificity. By contrast,
standalone E3 ligases, like MDM2, c-CBL, PARKIN, or SMURF1/2, either
have specialized domains or undergo specific PTMs that recognize
substrates and facilitate E2 binding and ubiquitin transfer. For exam-
ple, HECTD3 operates via a two-step ubiquitin transfer mechanism
(Fig. 5b). However, substrate binding occurs through specific motifs
within the non-HECT regions that presumably recognize particular
degrons (sequence motifs, distinct PTMs, or unique structural
elements).

Previous annotations38,39 report 6 complex, 329 standalone, and
several unclassified E3s. We extended this annotation by curating non-
catalytic components and cataloging their direct interactions with E3s
(Fig. 5c). Multi-subunit complex structures are only resolved for four
E3s (RBX1/2, ARI1, andAPC11).While partial complexes are resolved for
12 E3s (e.g., APC11, ARI1/2), we found several binary direct interactions
between E3s and non-catalytic subunits, re-annotating 75 E3s operat-
ing as complexes (Fig. 5d, black), leaving 277 standalone38 and 110
unclassified E3s (Fig. 5d, red). RING8 family displayed many complex
E3s (50%), followed by RING1 (26%), while RING2 and HECT2 families
displayed entirely standalone E3s (Fig. 5e, Supplementary Table 5).
Consistent with our findings, we observe that MARCH-type E3s
(RING2) operate in the membrane environment primarily as standa-
lone enzymes.HECT2proteins (e.g., HECD3)possessmultiple domains
for adaptor, receptor, and scaffolding, explaining their standalone
function.

Next, we assembled the E3–substrate interaction (ESI) network by
integrating data from known ESIs (n = 2012), direct PPIs (n = 5844),
indirect PPIs (n = 6530), and predicted ESIs (n = 64802; Fig. 5f, see
Methods). Integrating these data and verifying their ubiquitination
status resulted in excluding false positives (E3-associated) and

improving the annotation of likely substrates (Supplementary
Figs. 20a–c). This enabled mapping ≈ 62% (n = 7691 substrates) of the
ubiquitinated human proteome (Fig. 5g).

Analysis of the E3–substrate network revealed distinct specificity
patterns. Usingwell-known ESIs,weobserved thatmost E3 ligases have
a single substrate (~102), fewer targetmultiple (~101), andonly a handful
possess extensive substrate sets (Supplementary Fig. 20d). Most sub-
strates are targeted by E3s belonging to two ormore families (n = 5520
Promiscuous substrates, n = 72749 interactions; Fig. 5h, bottom;
Supplementary Table 6). We also identified substrates that are
potentially ubiquitinated by two ormore E3s belonging to the same E3
family (n = 804 Family-specific substrates, n = 3292 interactions;
Fig. 5h, middle) and substrates uniquely targeted by specific E3 ligases
(n = 1367 E3-specific substrates, n = 1367 interactions; Fig. 5h, top).

For instance, the E3 ligase SMUF1 specifically targets TBX6 for
degradation during cell differentiation40. Similarly,
MARCH5 specifically targets FIS1 for ubiquitination (Fig. 5i) to regulate
mitochondrial fission41. Both NEDD4 and ITCH belong to the HECT
family and ubiquitinate MART1 to exert complementary functions for
the sorting and degradation42, and PACS2 is ubiquitinated by BIRC2
and BIRC3, members of the RING3 family (Fig. 5i), conferring TRAIL
resistance to hepatobiliary cancer cell lines43. CDN1A, a central reg-
ulator of cell cycle andDNAdamage response, is ubiquitously targeted
by diverse E3 ligases, linkingmultiple signaling pathways to replication
checkpoints (Fig. 5i). Overall, integrating the ESI network obtained
here with ubiquitination and degron mapping efforts provides a
powerful framework to uncover additional E3-substrate relationships,
validate candidate ligases, and reveal functional redundancies or
specificity (Supplementary Note 17).

Druggability map of the human E3 ligome
To learn likely avenues of proximity-based therapeutics and leverage
the relationships within the human E3 ligome, we mapped existing E3
handles derived from known Proteolysis Targeting Chimeras (PRO-
TACs) and E3 binders to individual E3s and their families (Supple-
mentary Fig. 21a, Supplementary Table 7). Only 16 proteins (9 catalytic
E3s and 7 adaptors) are directly targeted by existing E3 handles
(Fig. 6a, top). A large fraction of the designed E3 handles are specific to
adaptor proteins (e.g., VHL, CRBN), and only a very select few directly
target the catalytic E3s (e.g., XIAP, MDM2/4/7, BIRC2/3/7; Supple-
mentary Fig. 21b). Nearest neighbor analysis using our E3 ligome
identified five closely related proteins (BIRC8, RN166/181/141, and
UBR2; Fig. 6a, top; grey boxes). Given their high structural similarity
(often paralogs), the same E3 handles could be repurposed to target
them. Mapping small-molecule E3 binders gave us a potential set of
compounds targeting 25 additional E3s and 15 non-catalytic compo-
nents, thus identifying unexplored targets and avenues for lead
development for the rational design of E3 handles (Fig. 6a, bottom; red
labeled).

Next, we mapped the chemical landscape of E3 handles and E3
binders using the Uniform Manifold Approximation and Projection
(UMAP) embeddingof high-dimensional 2048-bitMorganfingerprints.
By clustering them, we visualized their molecular similarities. Com-
parisonwithother dimensionality reductionmethods, suchasPCA and

Fig. 4 | Functional segregation of the E3 ligome. Volcano plots of Gene essenti-
ality analysis derived from CRISPR screens for (a) catalytic and (b) non-catalytic
components of the E3 ligome. c GO enrichment analysis for essential catalytic E3s.
d The functional landscape of the E3 ligome (biological processes) is captured by
the network of GO annotation clusters. Individual nodes representing GO clusters
(20 labeled) are drawn as pie charts (sizeproportional to # of E3s; colored by family
enrichment) connected by distinct edges (κ-similarity ≥ 0.3). e The heatmap dis-
plays all functional clusters corresponding to family-specific enrichment of E3s
(p value estimated using hypergeometric test (two-sided), discrete color scale for
p value ≤0.01; white otherwise). Colored triangles show examples of family specific

enrichment for (f) K6-linked ubiquitination (purple) and antiviral innate immune
response (green), (g) starvation response under 6h EBSS treatment (blue), and (h)
DNA damage response under 4h 100 nM CPT treatment (orange). For panels f–h
gene essentiality data log2ðFCÞ or DepMap Gene Effect scores (*) are plotted for
individual E3s. The ratio denotes the fraction of E3s with experimental evidence
(PMIDs) forGO functions directly. g,h panels also show volcanoplots of proteomic
analysis, highlighting significantly up-regulated and down-regulated proteins (red
scatter; adjusted p values were obtainedusing Benjamini-Hochbergmethod in two-
sidedmoderated t-tests) with overlapping E3s (colored) and control proteins (blue
filled circles).

Article https://doi.org/10.1038/s41467-025-67450-9

Nature Communications |        (2025) 16:11382 8

www.nature.com/naturecommunications


t-SNE, did not provide optimal clusters (Supplementary Figs. 21c–d).
We detected 20 chemically distinct clusters within the UMAP space
(Fig. 6b, indexed, distinct colors) by fast search and identification of
density peaks44. 12 compound clusters contain only E3 binders, while
the remaining 8 also contain E3 handles targeting specific proteins
(Supplementary Fig. 22). The top 6 clusters occupy a large central sub-
space, indicating cluster heterogeneity (relatively large chemical
space). These compound clusters predominantly target proteins from
RING3 and RING7 and adaptors (9123molecules, 67%). E.g., the cluster
#2 contains 1222 ligands forming 5 dense sub-clusters representing
distinct chemo-types that selectively target MDM2/4, IRAK4, XIAP,

HDAC6, and BIRC2, respectively (Fig. 6c). Further, the compounds
from clusters #1–6 target a large number of proteins and display less
specificity (Fig. 6d; LPij ≤ 3, low-binding likelihood). The clusters #9–20
are relatively more homogeneous, occupy small peripheral regions of
the UMAP-space, and display high selectivity (1–3 targets/cluster with
LPij ≥ 3, cyan squares).

3D structures of compound–E3 interactions are limited. Our
mapping showed that only 231/14615 pair-wise interactions are
resolved in the PDB (Fig. 6e, covering 212/13620 compounds). These
structures mainly feature well-studied E3 handles and binders, high-
lighting clear examples for drug repurposing. In cluster #13, the

Fig. 5 | Protein–protein interactions of the E3 ligome. Representative examples
of E3 ligases functioning as a (a) multi-subunit protein complex (CRL) or (b) a
standalone enzyme (HECD3). c Venn diagram of pairwise interactions of adaptors,
receptors, and scaffold proteins with E3s. d Annotation of 462 E3 ligases into
complex, standalone, or unclassified modes of action. e Family-wise mapping of
data from (d). f Pairwise E3–substrate interactions for all E3s obtained by

integrating data from known ESIs, mapped transient direct and indirect PPIs, and
predicted ESIs. g Mapping of the ubiquitinated proteome with E3s (≈ 62%,
n = 12464). h Schematic showing substrate categorization into E3-specific, family-
specific, and promiscuous classes (left) and their relative distributions mapped
onto E3 families (right). i Representative examples for the three types of ESI
networks.
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MDM2/4-specific E3 handles could be repurposed to target SMUF1
(HECT) or BCL6 (RING6). The presence of SMUF1 binders or BCL6
binders, forming dense sub-clusters nearby, reflects their chemical
similarity (Fig. 6f). Further, analysis of surface pockets of E3s could

provide structural context and reveal similarity patterns for the
development of lead compounds into E3 handles. To this end, we
integrated the ELIOT data45, which includes detailed pocket analysis
for 73 compounds bound to 8 E3 ligases from our small-molecule

Fig. 6 | Druggability map of the E3 ligome. a Distribution of known E3 handles
(extracted from PROTACs, top) and expanded set of E3 binders (potential lead
compounds, bottom) targeting E3 families. Individual proteins uniquely targeted
by E3 handles (n = 16, black) and E3 binders (n = 40, red) are displayed for each
family. Grey-filled boxes (top) show closely related protein targets for E3 handle/
PROTAC repurposing. b Reduced 2D UMAP chemical space of E3 handles (n = 96)
and E3 binders (n = 13524); sizeproportional to p-ChEMBL value. Compound clus-
ters (colored) within UMAP space represent distinct chemical structures (Cluster
centers indexed #1–20) are identified by local density peaks (see Supplementary
Figs. 21). cMagnified view of cluster #2 showing dense sub-clusters of compounds
targeting multiple proteins. d Log-transformed propensities, LPij of individual

compound clusters capture binding likelihood. e Sankey plot showing the map
between PDB (3D interaction), ELIOT (pocketome), individual E3 proteins (19/56),
and their compound clusters (covering 212/13620) from our small-molecule
interaction analysis. f Magnified view of cluster #13 showing the proximity of E3
handles targeting MDM2/4 to SMUF1/BCL6 binders, inferred from compound
similarity and clustering in the reduced UMAP representation. g Example of a
potential lead compound identified from cluster #4. Ligand 4QH (similar to JQ1)
binds to TIF1A bromodomain (PDB code: 4ZQL) and can be developed into a spe-
cific E3 handle. Binding site analysis (from ELIOT) indicates a favorable PROTAC
score and high similarity to the TRI33 bromodomain pocket (RING8 member).
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interaction dataset (n = 74, Fig. 6e). Interestingly, in cluster #4, we
found a compound, 4HQ, bound to the bromodomain of TIF1A
(Fig. 6g). Given its moderate affinity and favorable ELIOT pocket
assessment, it could be developed into a specific E3 handle for either
TIF1A or homologous TRI33 (85% pocket similarity). Moreover, 4HQ is
similar to JQ1, a well-known ligand targeting the bromodomain of
human BRD4 (PDB code: 3mxf). Further, integration and comparison
of sub-cellular location, cell- and tissue-specific expression patterns of
E3s will be essential for effective drugging of the human E3 ligome
(Supplementary Fig. 23). In summary, this approach enables rational
and family-informed PROTAC design by linking chemical tractability
with context-aware E3-substrate relationships (Supplementary
Note 17).

Discussion
Navigating the vast and complex landscape of E3 ligase biology
requires a comprehensive approach. Despite decades of dedicated
investigation, the intricate diversity and functional complexity of E3
ubiquitin ligases continue to pose a significant challenge. In decoding
this complexity, we first curated and filtered E3 ligases, ensuring data
accuracy, consistency, and relevance for all downstream analyses. By
assigning confidence scores to each ligase and employing stringent
inclusion criteria, we remove false positives and improve annotation,
providing a high-quality and comprehensive human E3 ligome. Ulti-
mately, this simplification facilitated the identification of key catalytic
components and paved the way for applying machine learning and
algorithmic approaches to E3 systems.

The human E3 ligome exhibits remarkable heterogeneity, evident
in its diverse sequence, domain architectures, structures, and func-
tions. This diversity is shaped by not only the evolutionary forces
influencing domain shuffling and genetic rearrangements but also
biophysical forces influencing molecular recognition and spatio-
temporal regulation of enzymatic reactions, leading to specialization
and adaptation46. To effectively categorize E3 ligases, we require
overarching organizational principles delineating broad evolutionary
clans and functionally distinct subgroups within the E3 ligome. Hier-
archical classification captures organizational principles, achieves
higher prediction accuracy, and can handle previously uncharacter-
ized data and class imbalances more effectively47. These methods
enable a more precise and context-aware organization of proteins,
facilitating the recognition of salient and unique features48. However,
its performance heavily depends on choosing an appropriate metric
reflecting authentic relationships.

Assessments of similarity and distance are critical components of
human cognitive function and constitute a foundational element in
developing machine learning and applying data mining techniques49.
Using a weakly supervised learning paradigm, we optimized a linear
metric that is simple, scalable, and straightforward to interpret with
broad applicability. We bridged the molecular scale from protein
sequence, domain architecture, 3D structure, and molecular function,
resulting in a unique measure capable of detecting subtle shifts,
reproducing class-level grouping of E3s, and improving family and
subfamily definitions.

We present a multi-scale classification model enabling a com-
prehensive analysis of the E3 systems.We classify the E3 ligome into 13
distinct E3 families characterized by shared domains, comparable
architectures, and similar 3D structures. Bymoving beyond traditional
taxonomic methods and subjective, ad hoc classifications, our multi-
scale model provides a systematic and objective framework. Although
not explicitly dependent on any individual distance measure, it is
strongly associated with shared structural similarities and domain
architectures, providing exceptional resolution into functional spe-
cialization and mechanistic action of E3s. The largest RING class,
divided into 10 families, shows remarkable diversity. For instance,
MARCH, TRIM, and BTB groupings reflect domain architecture. The

RBR class exhibits striking homogeneity, suggesting strong evolu-
tionary conservation50. The HECT class is split into two individual
families (HECT1 and HECT2), consistent with the previous
classification51. These organizational insights lead to interesting addi-
tional hypotheses, revealing unexplored roles for existing E3s.

The functional diversity of the E3 ligome serves as a central hub
for cellular homeostasis, extending far beyond the classical proteaso-
mal degradation. CRISPR-Cas9 dropout screens identified a substantial
number of catalytic E3 ligases and non-catalytic components as
essential for cellular viability. They predominantly contribute to cri-
tical cellular processes, including DNA replication, repair, and main-
tenanceof genomestability. Given the limitations of experimental data
on E3 functions and the inherent challenges in quantifying them, GO
terms serve as functional proxies.We find that the generic functions of
E3 ligases are conserved across all families, encompassing protein
ubiquitination, modification, and degradation (BPs); localization to E3
complexes or the cytosol (CC); and catalytic activity driving ubiquitin
transfer (MF). More importantly, our classification captures functional
segregation of E3 systems, providing significant insights into the dis-
tinct biochemical and functional mechanisms regulated by individual
families. In test cases, we highlight how the RBR family promotes K6-
ubiquitination23, and RING5 E3s are involved in innate immune
responses26. By integrating known experimental evidence, gene
essentiality data, and proteomic profiling of HeLa cells, we mapped
E3 systems involved in global starvation30 and DNA damage
response52,53. Furthermore, our quality analysis identifies additional
testable hypotheses (from automated GO terms) and catalogs under-
characterized ligases.

Mapping the protein interaction landscape of thewhole E3 ligome
is challenging. We integrate disparate datasets to build
enzyme–substrate networkmaps for each ligase family. We found that
RING1/3/8 and RBR members contain more multi-subunit E3 com-
plexes, while RING2 and HECT2 are likely to operate in a standalone
manner, directly recruiting substrates. Further, we could classify sub-
strate molecules into E3-specific, family-specific, and promiscuous
substrates, providing foundational data for understanding the mole-
cular principles of substrate recognition. Recognition of shared pat-
terns in substrates can point to a better understanding of individual
and group-specificity. Further, orthogonal data on subcellular locali-
zation of E3s and substrates, their tissue-specific expression patterns,
explain the context-dependent ESIs and the prevalence of pro-
miscuous substrates.

Targeted protein degradation via PROTACs is a promising
therapeutic strategy to target previously undruggable proteome54.
Despite its potential, progress in targeting unexplored E3s and the
rational design of specific E3 handles has been gradual. Most often,
PROTACs and glue-like compounds exploit ligands against well-
known adaptor proteins like CRBN- and VHL-dependent modalities
to target CRLs for the specific degradation of substrates. Only a few
E3s have been directly targeted using PROTACs55,56. By leveraging
the E3 ligome structure, we extend the map of E3 handles,
increasing the likelihood of repurposing existing PROTACs to target
closely related E3s in a family-specific manner. Further, by mapping
an expanded set of E3 binders and associating them with unex-
plored E3s, we build a curated set of lead compounds with unique
chemical signatures for further rational design of specific E3 han-
dles. Although 2D-based UMAP visualizations offer a computation-
ally efficient overview of chemical diversity and aid in hypothesis
generation, they may fail to capture activity cliffs or bio-isosteric
relationships. Complementing the druggability map generated here
through physics-based approaches, including 3D conformational
sampling and HTP docking screens of ligands against the druggable
E3 pocketome45 will propel the rational design of specific E3 han-
dles. Furthermore, exploiting the emergent relationships offered by
the E3 ligome, in combination with other metrics capturing their
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localization, cell-, tissue-expression, enriched ESI networks, and
a list of already targeted and unexplored E3 binders, allows
an efficient drugging strategy for unexplored targets in health and
disease.

In conclusion, the multi-scale classification framework developed
here provides a comprehensive global view of the human E3 ligome.
Mapping disparate multi-modal and multi-resolution data onto the
ligome structure, such as functions, interactions, and druggability,
provides a systems-level understanding, enabling high-throughput
screening and profiling. Themetric learning paradigm developed here
is simple and transferable to other areas of data-driven biology. More
specifically, the human E3 ligome offers clear actionable guidelines
and a unified framework for systematic annotation and interpretation
of ubiquitination data, enabling integration with high-throughput
proteomics and genetic screens, including spatial proteomics to
identify functionally relevant E3s, uncover pathway-specific patterns,
and guide rational design of targeted degradation strategies. We
anticipate that the data and insights presented here will stimulate
further research into E3 systems and drive the development of inno-
vative therapeutics.

Methods
Assembly of the human E3 ligome
We collected eight individual human E3 ligase datasets (A1, ⋯ , A8)
including previously published reports17–19 and public repositories:
E3Net39, UbiHub38, UbiNet 2.057, UniProt (retrieved on 2023-02-13 with
keyword “e3 ubiquitin-protein ligase”)58, and BioGRID (retrieved on
2022-01-26)59 compiled using multiple distinct criteria. We merged all
of them to form an initial dataset (jS8

n= 1Anj= 1448), visualized the
overlap of individual resources using UpSet plot60, and assigned a
consensus score to each entry based on its presence/absence among
the source datasets.We then compiled a list of distinct, well-studied E3
catalytic domains from InterPro61 corresponding to RING, HECT, and
RBR classes fromall published sources (C = {dC}). Using the presenceof
characteristic catalytic domain(s) di within each polypeptide, we
identified and filtered 1448 proteins corresponding to all catalytic
subunits of E3 ligases, fXi 2

S8
n = 1j9di 2 Cg. This was followed by

manual curation based on InterPro domain descriptions of possible
catalytic activity (E2-binding andUb transfer) to obtain thefinal refined
set of 462 E3 ligases (E3 ligome).

In multisubunit E3 ubiquitin-ligases–most prominently the
Cullin-RING ligases (CRLs)—three functionally distinct classes of
subunits cooperate to bring an E2~Ub in proximity to a specific
substrate. Large, rigid, central scaffold proteins (e.g., the Cullin
family, Cul1–Cul5) organize the ligase complex by simultaneously
binding the catalytic RING-finger subunit and the docking sites
for adaptors or receptors. Adaptor proteins bridge modules that
link a scaffold’s N-terminal docking surface to a separate
substrate-receptor. They often recognize a conserved motif on
the receptor subunit (e.g., F-box, SOCS-box, WD40 proteins). The
receptor proteins are specificity determinants that directly
recognize and bind degron motifs on substrates. They define
which substrates get ubiquitinated (e.g., Skp2, Keap1, VHL). We
independently annotate and classify each of the three classes: 151
adaptors, 106 receptors, and 8 scaffold proteins, and use their
PPIs to map distinct substrates for multi-subunit E3s.

Multi-scale distance measures
We encoded the pair-wise relationship of E3 ligases by computing
twelve distinct distances (dPQ) spanning several granularity levels:
primary sequence, domain architecture, tertiary structure, function,
subcellular location, and cell line/tissue expression. All the distance
measures were scaled between [0, 1] for comparison and even
combination.

At the sequence level, we used an alignment-free local matching
score-based (LMS) distance and an alignment-based γ distance
betweenproteinpairs using the canonical isoformsequences. The LMS
distance dLMS

PQ between two proteins P and Q is given by

dLMS
PQ = 1� 2LMSðP, QÞ

LMSðP, PÞ+ LMSðQ,QÞ , ð2Þ

where LMSðP,QÞ=Pi2fP0 , Q0 gM½i, i� captures the extent of local similarity

by summing BLOSSUM62 substitution scores for overlapping
5-residue fragment pairs fP0, Q0g from proteins P and Q62,63. The
pairwise γ distance measures the evolutionary distance between
the globally aligned sequences of two proteins, P and Q, where pPQ is
the fraction of alignment positions with residue substitutions and
indels, and a = 264.

dγ
PQ =a½ð1� pPQÞ�1=a � 1�, ð3Þ

To quantify the preservation of domain architectures among
all protein pairs, we computed three distances: Jaccard,
Goodman–Kruskal γ, and domain duplication distances, using domain
annotations obtained from the InterPro database61 (Nov 2022). The
Jaccard distance65,66 represents the compositional similarity of protein
domains. It is the ratio of the number of shared (N0

PQ) and unique
domains (N0

P, N
0
Q) between proteins P and Q,

dJac
PQ = 1� N0

PQ

N 0
P +N

0
Q � N0

PQ
: ð4Þ

The Goodman-Kruskal γ distance compares the order of domain
arrangements between two proteins, P and Q, and is computed as

dGKγ
PQ = 1� 1 + γPQ

2
, ð5Þ

where γPQ = ðNS
PQ � NR

PQÞ=ðNS
PQ +NR

PQÞ with NS
PQ and NR

PQ denoting the
same- and reversed-ordered pairs of proteins P andQ, respectively66,67.
Finally, the domain duplication distance66 compares the overlap of
tandem domain repeats and is given by

dDup
PQ = 1� exp �

XN0
P +N

0
Q

i = 1

jNP
i � NQ

i j
S

24 35,
where S=

XN 0
P +N

0
Q

i= 1

max ðNP
i ,N

Q
i Þ;

ð6Þ

N0
P and N 0

Q are unique domains in proteins P and Q with NP
i and NQ

i
repeats, respectively.

To compute distances between structures of pairs of ligases,
we used AlphaFold2 models (version 4)68. We restricted compar-
isons to contiguous protein segments containing all catalytic
domains for each protein to avoid comparing flexible regions of
the full-length structures. We computed the TM-score as imple-
mented in US-align69. The TM-score between the 3D structures of
proteins P and Q is given by,

TM-scoreðP,QÞ= max
1
LP

XLali
i

1

1 +
� di
d0ðLPÞ

�2
264

375, ð7Þ

where LP is the length of protein P, Lali is the number of
common residues between aligned proteins P and Q, and
d0ðLPÞ=

�
1:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LP � 153

p �� 1:869. To account for the inherent
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asymmetry in the TM similarity scores due to normalization by refer-
ence protein length LP, we computed the structural distance between
protein structures P and Q by averaging their TM similarities as

dStr
PQ = 1� TM� scoreðP,QÞ+TM� scoreðQ, PÞ

2
: ð8Þ

Functional distances among the protein pairs P and Q were cap-
tured using semantic similarities of annotated GO terms correspond-
ing to the three GO ontologies—molecular functions, biological
processes, and cellular components—using the package GOGO70. The
protein to GO term mappings were retrieved (in Feb. 2023) from the
Open Biological and Biomedical Ontology Foundry and the Gene
Ontology resource48,71. For each annotated GO term x, we obtained a
directed acyclic graphDAGx= (x, Tx, Ex)with nodesTx andedges Ex.We
defined the semantic contribution, followingWang et al.72, Sx(t) of aGO
term t to the target term x as

SxðtÞ=
�
1 if t = x,

max
�
weSxðt0Þ j t0 2 childrenðtÞ� if t≠ x:

Further, the semantic similarity between two GO terms x and y,
represented by two graphs DAGx and DAGy, is defined as

SimWangðx, yÞ=
P

t2Tx\Ty
SxðTÞ+ SyðtÞP

t2Tx
SxðtÞ+

P
t2Ty

SyðtÞ
:

By extension, the semantic similarity between a singleGO termx and a
set of GO terms GOY = {y1, y2, ⋯ , yk} is defined as the maximum
semantic similarity between x and any of the terms in Y:

Simðx, GOY Þ=max1≤ i≤ kSimWangðx, yiÞ:

Finally, the semantic distance between proteins P and Q, annotated
with sets of GO terms GOP = {p1, p2,⋯ , pm} and GOQ = {q1, q2,⋯ , qn},
respectively, is calculated as

dSem
PQ = 1� SimðGOP, GOQÞ

= 1�
P

1≤ i≤m
Simðpi, GOQÞ+

P
1≤ j ≤n

Simðqj , GOQÞ
m+n

ð9Þ

Using Eq. (9), we computed three semantic distances dBP
PQ, d

CC
PQ,

and dMF
PQ for the three different GO ontologies.

To compute the subcellular localization distance dScL
PQ , each

protein’s main and auxiliary subcellular locations were mapped
from the Human Protein Atlas73 and used to construct a location
vector with weights 1 and 0.3, respectively. We then computed
dScL
PQ using the cosine similarity between the location vectors of

proteins P and Q as

dScL
PQ = 1� P �Q

k P kk Q k : ð10Þ

Finally, we computed the tissue (dTE
PQ) and cell line co-expression

(dClE
PQ ) distances from the tissue and cell line expression profiles of the

proteins P and Q. We retrieved expression data from the Human Pro-
tein Atlas73, transcripts per millions of mRNA levels from the 253
human tissues of RNA HPA tissue gene dataset and 1055 cell lines of
RNA HPA cell line gene dataset, respectively. Both distances were
calculated using Spearman’s rank correlation coefficient rS,PQ as

dTE
PQ = 1� 1 + rTES, PQ

2
and ð11Þ

dClE
PQ = 1� 1 + rClES, PQ

2 ,

where rS, PQ =
cov
�
RðPÞ,RðQÞ

�
σRðPÞσRðQÞ

:
ð12Þ

Metric optimization, clustering, bootstrapping, and
classification

We combined the pairwise gamma (dγ
PQ), Jaccard (dJac

PQ), structural

(dStr
PQ), and semantic molecular function (dMF

PQ ) distances to capture all
orthogonal information from the four significant hierarchies—
sequence, domain architecture, 3D structure, andmolecular function—
into a single metric spanning the entire molecular scale. We used a

weighted-sum model of these four distances, DPQ =
P4

i= 1wid
i
PQ, by

uniformly sampling the weights as a function of tree cutoff, h, a
hyperparameter. Optimized weights, bwi were obtained by maximizing
the element-centric similarity index22, which represents the similarity
between clusters derived from parsing the emergent dendrogram, at
evenly spaced cutoffs, h ∈ (0, 1) derived from the combined distance
and the class-level grouping of E3s into RING, HECT, and RBR classes
(partial ground truth). At each cutoff h, we sampled ~104 emergent
distance matrices (∑iwidi), obtained their emergent hierarchical clus-
ters, and computed SEC for each one of them.We chose 100 emergent
metrics with the highest SEC for each h and computed the averages and
standard deviations of their corresponding weights. The stabilized
weights bwi at h ≥ 0.9 corresponding to the maximum SEC were chosen
to construct the optimized distance measure. Dendrograms were
computed from hierarchical clustering of individual and combined
distance matrices using Ward’s minimum variance method74 as
implemented in SciPy. The emergent metric was resampled 500 times
by swapping protein labels to compute bootstrap support at each
bifurcation node. Unrooted trees with scaled distances were drawn
and annotated with domain architectures of individual E3 leaves using
iToL75. The final tree was parsed at tree cutoff h = 0.25 to produce
optimal emergent clusters (E3 families). Each family was manually
analyzed for shared sequence and domain-architectural features to
identify subfamilies and outliers.

Gene essentiality and CRISPR-Cas9 dropout screens
A pooled multiplexed CRISPR-Cas9 library targeting 822 genes of the
human ubiquitin-proteasome system (UPS) was generated according
to previously reported methods76,77. Each UPS gene was targeted by 2
gRNAs, each expressed from a human 7SK promoter of a dual gRNA-
containing lentiviral plasmid, co-expressing puromycin. The second
gRNA cassette expressed an AAVS1-targeting gRNA as a neutral con-
trol. NGS verified successful cloning, and lentiviral particles were
obtained from VectorBuilder.

Library preparation was done using RPE1 cells obtained from
ATCC stably expressing Cas9. Cell lines were routinely tested for
Mycoplasma contamination. They were transduced with infectious
lentiviral particles of the UPS library at 50X coverage and amultiplicity
of infection (MOI) of 0.5 to ensure predominantly single integrations
per cell. Following infection, cells were subjected to two rounds of
puromycin selection (each round for 48 h). Throughout the screen,
cells were maintained at a minimum coverage of 50-fold per sgRNA to
preserve representation of the library. After ~10 cell doublings
(≈ 14 days), cells were harvested and genomic DNA was extracted
following previously established protocols76.

NGS preparation was performed in two steps. First, 900 μg (50X
coverage) of genomic DNA was used in a 50 μL PCR-1 reaction with
primers amplifying both sgRNA library cassettes. PCR-1 had the fol-
lowing composition: 25 μL ofNEBNext®UltraTM II Q5®MasterMix (NEB,
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M0544L), 2 μL of primermix (0.4 μMeach, IDT), 2.25 μg genomic DNA,
and H2O to 50μL. PCR cycling conditions were as follows: 1 min at 98
°C, followed by 15 s at 98 °C, 20 s at 65 °C, and 60 s at 72 °C for 20
cycles, with a final extension for 60 s at 72 °C using an Eppendorf
Mastercycler® X50. PCR-1 products from the same sample were then
pooled. For each sample, a second PCR reaction was performed to add
P5 andP7 Illumina adaptors, including demultiplexing barcodes. PCR-2
primers also included eight different stagger lengths, all of whichwere
pooled in equimolar amounts. PCR-2 reactionmixwas as follows: 25 μL
of NEBNext® UltraTM II Q5® Master Mix (NEB, M0544L), 1 μL of P5 pri-
mer and 1 μL P7 primer, including barcodes (0.2 μMeach, SIGMA), 10%
input from PCR1 and H2O to 50 μL. PCR cycling conditions were as
follows: 1 min at 98 °C, followed by 15 s at 98 °C, 20 s at 68 °C, and 30 s
at 72 °C for 11 cycles, with a final extension for 60 s at 72 °C using an
Eppendorf Mastercycler® X50. Barcoded PCR-2 products were then
pooled andgel-purified according to the ZymocleanGelDNARecovery
Kit (Zymo, D4001). NGS Sequencing was performed at Genewiz. Read
Counting of the library and both biological replicates of end time
points were done with ReCo78. For each replicate, we performed
log2ðCPM + 1Þ transformation for eachgRNA toobtain normalized read
counts.

NRCi = log2
gRNAi ×n × 100Pn

i = 1gRNAi
+ 1

� �
ð13Þ

Where gRNAi = RC of gRNA targeting gene i; n = total number of
guides in the library. We computed log-fold changes (LFCs) as the
differences between the NRCi of both gRNAs. Gene-level LFCs were
obtained by averaging the LFC values of guides targeting the same
gene. Using Limma79, we fit a linear model for each gene, considering
thedifferent gRNAs as technical replicates and thebiological replicates
as blocks. We used the Correlation function to estimate the intra-
block correlation. Then, we calculated p values using empirical Bayes
(eBayes) followed by correction formultiple testing using a Benjamini-
Hochberg correction. We defined genes with significant contribution
to cell fitness if their corresponding ∣LFCi∣ ≥ 1 and FDR ≤0.05.

Identifying generic and specific functions of the E3 ligome
GO enrichment analysis for E3 ligases corresponding to individual 13
families was performed using Metascape80, which implements a hier-
archical clustering approachbasedon κ-similarity≥0.380. The resulting
networks of GO terms at the biological process, cellular component,
and molecular function ontologies were rendered using Cytoscape.
Nodes were colored and drawn as pie charts to reflect E3 family con-
tribution (number of proteins) and enrichment. Individual GO terms
were considered significantly enriched within a ligase family if the
enrichment factor, Cobs:=Cexp: ≥ 2, a minimum of 3 proteins corre-
sponding to the family are annotated explicitly with the corresponding
GO terms, and a p value ≤ 0.01. Within each resulting GO cluster, the
GO term with the lowest p value was selected as the cluster label for
visualization. Heatmaps showing the enriched GO clusters for each
family were drawn to highlight the functional specialization of indivi-
dual E3 families. We ensured high-confidence evidence codes
(Experimental, Phylogenetic, and Computational evidence) for enri-
ched GO terms. GO enrichment analysis for essential E3 ligases
(background all E3 ligases present in UPS CRISPR dataset) was per-
formed using ShinyGO v0.8281, employing a Hypergeometric test with
Benjamini–Hochberg correction, FDR ≤0.05.

Cell culture, sample preparation, mass spectrometry data
collection, and analysis
HeLa cells were either challenged with (i) global starvation (EBSS
treatment triggering nutrient starvation and activating autophagy) or
(ii) DNA damage (CPT treatment inhibiting topoisomerase I to induce
single-ended DNA double-strand breaks). Cells (ATCC) were cultured

in DMEM supplemented with 10% FBS and 100 I.U./mL penicillin-
streptomycin in a 5% CO2 atmosphere at 37 °C. Starvation response
was induced by incubating cells in EBSS medium (Gibco) for 6h. For
triggering DNA damage response, cells were treated with 100 nM
Camptothecin for 4h before sample preparation. Cells were regularly
tested for Mycoplasma contamination using the Mycoplasma PCR
Detection Kit (Sigma). Cells were lysed in Lysis Buffer (2% SDS, 50mM
Tris pH 8.5, 10 mM TCEP, 40 mM CAA, supplemented with protease
inhibitor cocktail and phosphatase inhibitors), sonicated at 4 °C in a
Bioruptor Pico2 (30/30, 10 cycles), and boiled at 95 °C. Proteins were
precipitated using methanol-chloroform and digested with 1:50 w/w
LysC (Wako Chemicals) and 1:100 w/w trypsin (Promega) overnight at
37 °C. De-salted peptides were dried and resuspended in TMT-labeling
buffer (200mM EPPS pH 8.2, 20% acetonitrile) before being subjected
to TMT labeling with a 1:2.5 peptide TMT ratio (w/w) for 1 h at room
temperature. The labeling reaction was quenched by the addition of
0.5% hydroxylamine final concentration. Successful TMT labeling was
verified bymixing equimolar ratios of peptides and subjecting themix
to single-shot LC-MS/MS analysis. Peptides were fractionated using
high-pH liquid chromatography on amicro-flow HPLC (Dionex U3000
RSLC, Thermo Scientific). Pooled fractions were dried in a vacuum
concentrator and resuspended in 2%ACN, 0.1%TFA for LC-MSanalysis.

Tryptic peptides were analyzed on an Orbitrap Fusion Lumos
coupled to an easy nLC 1200 (ThermoFisher Scientific) using a 35 cm
long, 75 μm ID fused-silica column packed in-house with 1.9 μm C18
particles (Reprosil pur, Dr. Maisch), and kept at 50 °C using an inte-
grated column oven (Sonation). Peptides were eluted from 8% to 28%
Buffer B (80% ACN, 0.1% FA) over 75 minutes, followed by a step-wise
increase to 90% Buffer B in 21 minutes, which was held for another
9 minutes. A synchronous precursor selection (SPS) multi-notch MS3
method was used82. Full scan MS spectra (350-1400 m/z): resolution of
120,000atm/z 200,maximuminjection timeof 100ms, andAGC target
value of 4 × 105. MS2 scans (of precursors with charge state between 2-
6): maximum injection time of 50 ms, AGC target value of 15000, CID
fragmentation with a normalized collision energy (NCE) of 35%.MS3: 10
most intense MS2 fragment ions with an isolation window of 0.7 Th
(MS) and 2 m/z (MS2), HCD fragmentation, NCE 50%, resolution of
50000 at m/z 200, scan range of 100-500 m/z, AGC target value of
150000, and amaximum injection time of 86ms. Repeated sequencing
of already acquired precursors was limited by setting a dynamic
exclusion of 60 seconds and 7 ppm, and advanced peak determination
was deactivated. All spectra were acquired in centroid mode.

MS raw data were analyzed using FragPipe v21.1, with MSFragger
v.4.083 and Philosopher v.5.1.084. Acquired spectra were searched
against the human reference proteome (Taxonomy ID 9606) down-
loaded from UniProt (07/25/2024; 20,418 entries) with a precursor
mass tolerance of 20 ppm and fragment mass tolerance of 20 ppm.
Identificationswerefiltered to obtain false discovery rates (FDR)below
1% for both peptide spectrummatches (minimum peptide length of 7)
and proteins using a target-decoy strategy. For all searches, carbami-
domethylated cysteinewas set as a fixedmodification and oxidationof
methionine and N-terminal protein acetylation as variable modifica-
tions with allowing up to 3 modifications per peptide. Strict trypsin
cleavagewas set as the protein digestion rule. Label-free quantification
was performed using IonQuant v.1.10.2785. The differential expression
analysis was performed within FragPipe analyst86 using Limma79, and
derived p values were corrected for multiple comparisons using
Benjamini-Hochberg. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD067015.

Integrating PPI and ESI datasets
To identify E3 ligases likely functioning in complex mode, we com-
bined data from PDB (https://www.rcsb.org/) and IntAct87. Using the
refined lists of proteins corresponding to the E3 ligome, E1, E2,
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adaptors, receptors, and scaffold proteins (Ubihub and manually
curated lists), we retrieved all the PDB structures (as of Jul. 2025)
involving E3-adaptors, E3-receptors, and E3-scaffold protein com-
plexes. Additionally, PPIs obtained between E3-adaptor, E3-receptor,
and E3-scaffold proteins filtered ("experimentally validated” PPIs,
MI:0045 ≥ 0.5) for high confidence enteries. E3s interacting, or in a
resolved structure, with at least one receptor, adaptor, or scaffold
protein, were re-annotated as complex E3s. To assemble the
E3–substrate interaction map, we integrated multiple data sources,
including experimentally validated enzyme-substrate interactions
(known ESIs) from UbiNet 2.057 and UbiBrowser88, a set of predicted
ESIs from UbiBrowser (top 1% of predictions), physically interacting
protein pairs (PPIs) from the IntAct database (mapped PPIs), and
indirect PPIs involving ligases and potential substrates mediated by
adaptor, receptor, or scaffold proteins from IntAct (indirect PPIs).

To obtain a cut-off for filtering PPIs, we first detected a subset of
the well-known ESIs (experimentally curated from UbiNet; blue)
overlapping with the direct PPIs obtained from IntAct. The PSI-MI
confidence scores for theseoverlappingESIs (n=239) display amedian
value of 0.55. This encouraged us to use a threshold value ≥ 0.5 for
filtering PPIs. This cutoff strikes a balance between including enough
interactions for meaningful analysis while excluding lower-confidence
edges that disproportionately contribute noise. Further, major PPI
resources (IntAct/IMEx, Reactome, Open Targets) typically use
0.4–0.45 as a medium-confidence baseline. Rounding that to 0.5 pro-
vides us with a threshold that sits squarely in the “medium-to-high”
confidence range, increasing the proportion of PPIs detected using
diverse approaches89.

Known ESIs and the PPIs dataset were enriched using substrates
detected mainly by pull-down experiments, followed by two-hybrid
techniques. Amapof the ubiquitinated humanproteomewas obtained
by cross-checking the ubiquitination status and mapping ubiquitina-
tion sites for each identified substrate from dbPTM90 and
PhosphoSitePlus91. All substrates were categorized based on their
interactions with E3 ligases: those pairedwith a single, unique E3 ligase
were classified as E3-specific; those associated with multiple E3 ligases
from the same family were designated as family-specific; and those
linked to two or more E3 ligases from different families were labeled
promiscuous.

Mapping small molecule interaction data
A unified dataset of E3 handles (corresponding to all publicly docu-
mented PROTACs) and E3 binders targeting specific E3 ligases, adap-
tors, receptors, and scaffold proteins was obtained by combining data
from PROTACpedia (https://protacpedia.weizmann.ac.il), and
PROTAC-DB 3.092 and ChEMBL v3493. All small molecules were
uniquely identified by their chemical structure, represented using the
canonical SMILES format, and mapped to their target proteins and E3
families. Information from ChEMBL v34 was gathered using an SQL
query combining compound data, experimental data, and target pro-
tein information, and filtered using data from binding assays using
p-ChEMBL values.

p� ChEMBL= log10ðActivityÞ, ð14Þ

where activity is given by IC50, EC50,Ki,Kd, or somemeasureof potency
inmolar units. It enables comparison across different bioactivity types.
p-ChEMBL ≥ 6.0 is a commonly used threshold in early-stage screening
as a baseline for biologically relevant activity (≤ 1 × 10−6 M)94. 2048-bit
Morganfingerprint95 for each smallmoleculewasobtainedusingRDKit
(2048-bit array, radius = 3, http://www.rdkit.org). Dimensionality
reduction was performed using PCA, t-SNE, and UMAP using the
Python Scikit-learn package (default parameters) and visualized along
a 2D subspace, projections showing the highest variance. Further,
clustering of small molecules was performed by fast search and

identification of local density peaks44 using a scaled Euclidean distance
measure defined on the corresponding normalized 2D subspaces.
Using threshold values for local density (ρ = 20) and nearest
neighboring peak (δ = 0.1) demonstrated the superiority of UMAP
embedding and resulted in 20 small molecule clusters (indexed by i,
targeting proteins, j, with population ni = ∑jnij). For each cluster, i,
representative small molecules were automatically determined from
local density peaks, and their distinct set of targeted proteins j from
the E3 ligome were also mapped. We then quantified the binding
likelihood of individual clusters to target distinct proteins by
computing log-transformed propensities, LPij.

LPij = log2

nijP
j nij

 !
×

P
i

P
j nijP

i nij

 !" #
ð15Þ

Compound-E3 interaction structures were retrieved from the PDB
by converting compound SMILES to InChI keys with RDKit, querying
the EBI UniChem API for all small-molecule PDB entries, and merging
them with target-protein PDB entries from our dataset, retaining only
entries containing both. E3 pocketome data from ELIOT45 was then
mapped to these compound–E3 pairs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings are provided in the paper and the
Supplementary Information File. The mass spectrometry proteomics
data havebeendeposited to the ProteomeXchangeConsortiumvia the
PRIDE partner repository with the dataset identifier PXD067015. All
data generated, including source data for all figures, and additional
Supplementary data files (1–10), are deposited in Zenodo (https://doi.
org/10.5281/zenodo.17771730) under a CC BY-NC-SA 4.0 license. A
website on “The Human E3 Ligome" to browse the processed data is
also hosted on (https://e3-ligome-91adc4.gitlab.io/index.html) under
CC BY-NC-SA 4.0 license.

Code availability
The codes used to develop and analyse “The Human E3 ligome" and
perform this study are deposited in the public Zenodo repository
(https://doi.org/10.5281/zenodo.17771730) under a CC BY-NC-SA 4.0
license.
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