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Amyloid-like nanofibers from self-assembling peptides can promote viral gene transfer for therapeutic

applications. Traditionally, new sequences are discovered either from screening large libraries or by creat-

ing derivatives of known active peptides. However, the discovery of de novo peptides, which are

sequence-wise not related to any known active peptides, is limited by the difficulty to rationally predict

structure–activity relationships because their activities typically have multi-scale and multi-parameter

dependencies. Here, we used a small library of 163 peptides as a training set to predict de novo sequences

for viral infectivity enhancement using a machine learning (ML) approach based on natural language pro-

cessing. Specifically, we trained an ML model using continuous vector representations of the peptides,

which were previously shown to retain relevant information embedded in the sequences. We used the

trained ML model to sample the sequence space of peptides with 6 amino acids to identify promising

candidates. These 6-mers were then further screened for charge and aggregation propensity. The result-

ing 16 new 6-mers were tested and found to be active with a 25% hit rate. Strikingly, these de novo

sequences are the shortest active peptides for infectivity enhancement reported so far and show no

sequence relation to the training set. Moreover, by screening the sequence space, we discovered the first

hydrophobic peptide fibrils with a moderately negative surface charge that can enhance infectivity.

Hence, this ML strategy is a time- and cost-efficient way for expanding the sequence space of short func-

tional self-assembling peptides exemplified for therapeutic viral gene delivery.

1 Introduction
New peptides to increase viral transduction: a multi-parameter
challenge

Short self-assembling peptides have attracted much interest as
functional materials in recent years since they can be designed
in a precise and cost-efficient way.1 However, a small change in

sequence can drastically change physicochemical properties
on multiple length scales, which makes it challenging to
rationally design de novo self-assembling peptide sequences
with a desired bioactivity.2

For example, the emerging field of gene therapy requires
efficient transduction of target cells by viral vectors that deliver
the therapeutic gene.3 In this regard, self-assembled peptide
fibrils that increase the colocalization of viral vectors and cel-
lular membranes and thereby enhance gene delivery are prom-
ising candidates for new or optimized gene-therapeutic
applications.4–6 However, the discovery of self-assembling pep-
tides as enhancers of viral transduction via screening methods
is challenging because of the complexity in predicting
sequences that show the required physicochemical properties
such as sequence amphiphilicity, charge, and assembly, for
biological activity.7,8

Traditionally, new peptides with certain desired properties,
e.g., viral transduction/infection enhancement, have been
found mainly by serendipity during screening processes,4,9 or
by nature-inspired rational design.7,10,11 A common strategy is

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3bm00412k
‡Present address: Institute of Biochemistry II, Faculty of Medicine, Goethe
University, Theodor–Stern–Kai 7, 60590 Frankfurt, Germany.
§Present address: Institute for Theoretical Physics, Heidelberg University,
Philosophenweg 19, 69120 Heidelberg, Germany.

aDepartment Synthesis of Macromolecules, Max Planck Institute for Polymer

Research, Ackermannweg 10, 55128 Mainz, Germany.

E-mail: weil@mpip-mainz.mpg.de
bPolymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10,

55128 Mainz, Germany. E-mail: bereau@thphys.uni-heidelberg.de
cInstitute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1,

89081 Ulm, Germany

This journal is © The Royal Society of Chemistry 2023 Biomater. Sci.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 7

/4
/2

02
3 

8:
34

:0
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal

http://rsc.li/biomaterials-science
http://orcid.org/0000-0003-0077-7867
http://orcid.org/0000-0003-2116-6475
http://orcid.org/0000-0002-4259-6696
http://orcid.org/0000-0001-7316-7141
http://orcid.org/0000-0001-9945-1271
http://orcid.org/0000-0002-5906-7205
https://doi.org/10.1039/d3bm00412k
https://doi.org/10.1039/d3bm00412k
https://doi.org/10.1039/d3bm00412k
http://crossmark.crossref.org/dialog/?doi=10.1039/d3bm00412k&domain=pdf&date_stamp=2023-06-21
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3bm00412k
https://pubs.rsc.org/en/journals/journal/BM


finding recurring motifs in known active peptides to generate
new sequences.12,13 Although changing one amino acid at a
time to screen derivatives of a known active compound is often
a direct and efficient way to find active peptides with similar
structure and study property–activity relationship, it is not a
tractable way to discover new sequences. The sequence space
of peptides is huge—there are 206 = 64 million peptides if we
only consider all possible 6-mers composed of 20 canonical
amino acids. Further, the size of the sequence space increases
exponentially with the number of residues. Consequently,
exploring the peptide space to discover new peptides by creat-
ing randomly generated peptides or derivatives of known struc-
tures and studying them in experiments quickly becomes
unfeasible. In the quest to discover new peptides with certain
target bioactivity, computational methods have been estab-
lished for fast and inexpensive prescreening of peptide
sequences.14

Navigating through sequence space via machine learning

Machine learning (ML) can be applied to bridge the limited
experimental dataset with the vast compound space by analyz-
ing the sequence–activity relationships to reverse engineer
novel non-intuitive compounds.15–17 ML models are often used
to study structure–activity relationships since they can mitigate
the curse of dimensionality: peptides with similar values of a
target property can be far apart in sequence space but close in
some higher-dimensional underlying feature space.18 Various
supervised and unsupervised ML algorithms have been used,
for example, to predict liquid–liquid phase separating protein
sequences19 and to detect antimicrobial20 or cell-penentrat-
ing21 peptide sequences. Recently, an ML approach, in combi-
nation with Monte Carlo tree search and molecular dynamics
simulations, was reported for predicting unexpected de novo
β-sheet rich self-assembling peptides.22 While all these reports
successfully identified either bioactive or self-assembling pep-
tides separately, they did not predict bioactive self-assembling
peptides.

Inverse design of sequences via continuous vector embeddings

One way of training an ML model that can infer structure–
activity relationships of bioactive self-assembling peptides is to
use the minimal available information as input to the model—
the peptide’s sequence. Continuous vector representation is
the method of choice to represent complex sequence order
and composition of proteins and peptides for training ML
algorithms. For instance, the word embedding model
Word2Vec,23,24 that was originally developed as a natural
language processing tool, can be applied to extract structural
concepts to encode latent material property information across
various datasets.25

In this direction, Asgari and Mofrad recently proposed a
method that can convert any protein sequence into a unique,
dense, 100-dimensional numerical vector, termed ProtVec.26

They used a method from natural language processing that
employs an artificial neural network that, while attempting to
determine the context in which a word is most likely to occur

in a sentence, generates a continuous distributed representa-
tion of the word; further, the ProtVecs were found to accurately
capture the physicochemical properties of proteins.

Here, we report a three-step approach to explore the
sequence space of bioactive self-assembling peptides and dis-
cover de novo sequences with high bioactivity by only using
sequence and activity information. First, we trained a LASSO
(Least Absolute Shrinkage and Selection Operator) regression
model using ProtVec representations of peptides from a rela-
tively small library of 163 sequences with known activity
values. LASSO aims at identifying a minimal subset of para-
meters relevant to the prediction, thereby enhancing explain-
ability. Then, we utilized the trained model to systematically
sample the sequence space of 6-mer peptides using a Monte
Carlo approach.27 Finally, we screened the sequences with
highest predicted activities based on their charge and ten-
dency to aggregate. The search yielded 16 new peptides, which
were tested experimentally and found to be active with a 25%
hit rate or a 50% hit rate if further predictive parameters like
aggregation are included. Strikingly, the newly created pep-
tides are very different in sequence from the ones comprising
the training set and shorter than any previously reported
sequence for infectivity enhancement. Taken together, our
method offers a fast and computationally inexpensive way of
predicting and screening potentially bioactive, self-assembling
peptides for any desired target bioactivity; consequently, it can
accelerate peptide screening in the early stages of research.

2 Results

To gain insight into sequence elements and predict de novo
sequences, which enhance retroviral transduction, we
exploited an already reported peptide library for viral transduc-
tion enhancement consisting of 163 sequences. This library
was based on the self-assembling 12-mer peptide EF-C
(QCKIKQIINMWQ) corresponding to residues 417–428 of the
HIV envelope protein gp120 and was created by systematic
peptide sequence alterations (Fig. 1A).4,7,8 The rational design
of the library results in similar sequences (Fig. 1B), which
show a wide range of activity (Fig. 1C). We decided to use this
peptide library as a training set to demonstrate the usefulness
of ML approaches because this data set represents a common
situation in the early stage of research, where one wants to
explore the peptide sequence space starting from a relatively
small library consisting of derivatives of a known active
compound.

Exploration of sequence space

The ML approach we used is summarized in Fig. 1D. The self-
assembling bioactive peptides that were used to train the ML
model were previously reported by us.8 As described in the
introduction, we represented the peptide sequences as dense,
100-dimensional numerical vectors, termed as ProtVecs, using
a continuous distributed representation proposed by Asgari
and Mofrad.26 One of the advantages in using continuous dis-
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tributed representation is that it captures underlying bioinfor-
matic properties and information on distance relationships of
neighboring amino acids and uniformly casts any arbitrary-
sized peptide to a unique numerical vector with a fixed size
(e.g., 100-d ProtVecs), which can be readily used in numerical
computations.14,26 We constructed ProtVecs for training set
peptide sequences by dividing the sequences into 3-grams (3
consecutive amino acids) and summing up the ProtVecs repre-
senting those 3-grams26 by linear vector addition. In that way,
100-d vectors are created for each sequence, which can be
assigned to an experimentally determined activity. The 100-d
vectors in combination with the bioactivity data were then
used to train a LASSO linear regression ML model (Fig. S1†).28

The model (ProtVec LASSO, ESI eqn (1)†) was validated via

5-fold cross-validation and found to correlate well with the
bioactivity (Pearson correlation coefficient R = 0.84, Fig. 2A).
Though a RIDGE regression model offers an alternative with a
similar Pearson correlation (R = 0.83, Fig. S1†), we used a
LASSO model since, by minimizing the number of non-zero
regression coefficients, it provides a simpler model with fewer
parameters.

The strength of this ML model is that it can be applied on
any other sequences made of canonical amino acids, which
can be represented in a 100-d vector. With the trained ML
model, we decided to screen for bioactive 6-mers. We chose
peptides with only 6 amino acids because they would be
shorter than any infectivity enhancing peptide from our library
or the literature.

Fig. 1 Schematic overview of the workflow. (A) A peptide library8 was created by systematic sequence derivations of the infectivity-enhancing
peptide EF-C. This database contains 163 peptide sequences and their respective biological activity data (i.e. enhancement of HIV-1 infection, “infec-
tivity”. (B) The sequence logo plot summarizes the amino acid frequency in the library and shows that most sequences are composed of positive
charged (K, lysine) and hydrophobic uncharged (F, phenylalanine or I, isoleucine) amino acids in alternating order. (C) The diagram shows the length
distribution of infectivity enhancement in log scale relative to the reference peptide EF-C. Despite the sequence similarity, a wide range of activities
can be found within the library. (D) Flowchart summarizing the machine-learning approach in this study. As input data, the EF-C based peptide
library (A) was used. Each peptide sequence in the library was represented as a 100-dimensional vector using a continuous distributed representa-
tion, ProtVec.26 The vector and respective activity were used in a supervised LASSO regression model to compute a linear relationship between the
activity and relevant components of the 100-d ProtVec. The trained model was then used in a Monte Carlo search where 1 million 6-mers were gen-
erated, and the 6-mers that were predicted to perform better than EF-C were retained based on a Metropolis criterion (see Methods). By repeating
the Monte Carlo step 16 times, each time starting with a random 6-mer, a broad portion of the 6-mer sequence space was covered.
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To sample the sequence space in a time and computational
wise cost-efficient way we applied a Monte Carlo model, so
that not all possible 6-mer sequences (206 = 64 million) must
be calculated. Starting from 16 initial 6-mers with randomly
chosen residues, we executed 16 independent MC runs which
were continued for 1 million steps, generating a peptide at
each step. The generated peptides were retained based on a
Metropolis criterion (Fig. 2B, see Methods; full lists of the

retained peptides, along with code, data, and the trained ML
models, can be found at https://gitlab.com/arghyadutta/seq-to-
infect).

From each of the 16 MC runs, only 1000 sequences with
the largest predicted infectivity values were kept, yielding
12 320 sequences after removing duplicates (Table S3†). The
predicted 6-mer sequences were represented in a 2-d t-distribu-
ted stochastic neighbor embedding (t-SNE)29 dimensionality

Fig. 2 (A) Performance of supervised linear regression model trained from EF-C based library. The experimentally measured data correlate highly
with the predicted infectivity enhancement (Pearson R = 0.84). (B) Scheme showing the selection criteria for narrowing down putatively infectivity-
enhancing peptides for experimental evaluation. From each independent prediction Monte Carlo Sampling run the best predicted 1000 sequences
were selected. From this subset 3669 sequences showed a positive net charge and were further considered as promising candidates. 8 sequences
predicted for aggregation and 8 sequences not predicted for aggregation were selected for experimental testing. The letter size in sequence logo
plots is visualizing the amino acid frequency at the corresponding positions in the predicted 6-mer sequences. A detailed listing of amino acids
abundancy for the 3669 peptides is shown in Fig. S4.† The Venn diagram is summarizing the main composition motifs of the 3669 peptides. (C)
t-SNE dimension reduction plot of the predicted sequences (12 320, blue), the selected subset (16, large yellow symbols with sequence information)
and training set (grey). The data points are projected from a 100-d space to a 2-d space with t-SNE.
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reduction plot from 100-d vector space to check their semantic
varieties (Fig. 2C). The t-SNE algorithm attempts to cluster
sequences that are semantically close to each other regarding
their amino acid composition. As expected, the training set
peptides, which have similar amino acid compositions by
design, formed a cluster that is distinctly separate from the
widely distributed clusters of the generated sequences.

Criteria for selecting sequences

To further narrow down the list of potentially interesting
sequences for experimental evaluation, we applied two selec-
tion criteria based on previously found evidence for infectivity-
enhancing self-assembling peptides: charge and propensity for
aggregation. Aggregation is important for bioactivity because
without the amyloid structure, the unique properties in cell-
adhesion30 and retroviral transduction enhancement8 are lost.
To find the peptides, that are prone to aggregate and form
fibrillar structure, we applied open source protein-aggregation
tools Tango,31 APPNN,32 Waltz,33 PATH,34 Aggrescan35 and
PASTA 2.0.36 Since these tools are developed for polypeptides
and proteins, we first evaluated the reliability of each tool to
predict aggregation of self-assembling short peptides with the
accuracy and receiver operating characteristic (ROC) value
(Fig. S2†) by using our training set (Table S1†).8 APPNN,32

PATH,34 and Aggrescan35 performed best (Fig. S2†) and were
used to select aggregation prone peptides.

Out of the 12 320 predicted sequences for infectivity
enhancement, 3669 peptides have a net positive charge; 424 of
these 3669 peptides were predicted for aggregation by at least
two of Aggrescan, PATH, and APPNN (for detailed analysis see
ESI Section 2, Table S4†).

Most of these peptides contain the motif “WWN” (1600 of
3669) or the amino acid Cysteine (2009 of 3669) as visualized
in the Venn diagram and in the sequence logo plot (Fig. 2B,
and Fig. S4†). Interestingly, the motif “WWN” does not appear
in any of the training set peptides, whereas Cysteine was
shown previously by us to contribute positively to infectivity
enhancement.7,8 For experimental evaluation, peptides with a
large variation in sequences were selected from different clus-
ters in the t-SNE map in order to cover a large sequence space
(Fig. 2C). Other than predicted infectivity, hydrophobicity, and
aggregation propensity (Fig. S3†), we considered N-gram simi-
larity scores (Fig. S5, and Table S5†) to ensure diverse selection
of sequences. Finally, from the total 16 peptides selected for
experimental evaluation, 8 of the peptides were predicted for
aggregation, and 8 sequences were not predicted for aggrega-
tion as a control group (Fig. S3†). All these peptides strongly
differ sequence wise from the training set, as visualized via
sequence plot and N-gram similarity scores (Fig. 2B, and
Fig. S5†).

Prediction yields highly active de novo peptides

16 short 6-mer peptides predicted for high biological activity
(enhanced HIV-1 infection rates) were selected for experi-
mental evaluation of their physicochemical properties and

infectivity enhancement. All the tested peptides are biocompa-
tible as tested via a cell-viability assay (Fig. S8†).

4 of the 16 peptides show remarkable infectivity enhance-
ment above 10% relative to EF-C (Fig. 3A, and Fig. S7†). It is
important to recognize the inherent difference in sequence
length when comparing the infectivity enhancement of the
newly found sequences with EF-C. The four infectivity enhan-
cing 6-mer peptides have roughly half the molecular weight of
the 12-mer EF-C. Therefore, these peptides exhibit approxi-
mately twice the infectivity enhancing efficiency in terms of
mass concentration when compared to EF-C. Consequently, a
direct comparison needs to consider this significant difference
of sequence length. Further, these 4 peptides were predicted
for aggregation, resulting in a hit rate of 50% based on the
selected 8 aggregation prone peptides (Fig. S3†) or a hit rate of
25% relative to the entire selection. Interestingly, among these
peptides only one peptide (ICICLK) shows a positive zeta-
potential. The other 3 peptides (HVWCIF, HICLFW, HFICIC)
form fibrils, colocalize with cell-membranes (Fig. 3B–E) and
show infectivity enhancement despite their moderately nega-
tive zeta-potentials. We wondered whether these hit peptides
show a different mode of action and applied a property–activity
correlation model, which was developed with the training set
(ESI section 4†).8 The newly created peptides fit in the model
well (R = 0.72, Fig. 3F), which indicates an interaction mode
comparable to the training set: the peptide fibrils associate
with viruses and colocalize them with cellular membranes,
which facilitates the uptake and increase infection rate.4

3 Discussion

ML is an emerging approach to discover new active com-
pounds from a diverse chemical space.37 The main benefit of a
ML-based approach is that it can extract underlying structure–
activity relationships and use this information to predict new
structures with the desired activity. With the increasing com-
plexity of systems, it is becoming more difficult to rationally
design structures from scratch, as experienced often for self-
assembling structures that span nm to µm length scales and
differ strongly in their biological activities. In this regard, ML
is a promising approach to discover bioactive self-assembling
peptides, which are difficult to rationally design de novo. Here,
we show that a ML approach, relying on continuous vector rep-
resentation for proteins, can be applied to design and predict
short 6-mer peptides with diverse sequence and physico-
chemical properties.

Our training set contains 163 peptide sequences based on
derivatives of an active compound. Small training sets are
common in early stages of research, but they are rarely con-
sidered for ML approaches that aim to predict new sequence
spaces since training the model is difficult.20,27,38–42 As shown
here, new peptide sequence spaces can be discovered via a
computational approach that combines ML and MC with
further screening, while still using a small training set with a
wide variation in bioactivity.
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Interestingly, most of the predicted peptides are rich in
hydrophobic amino acids cysteine and tryptophan, the latter
mainly from the sequence motif “WWN”. Sequences which
contain these hydrophobic amino acids enhance infectivity if
they form fibrillar structures that are influenced by cysteine’s
capability to form disulfide bonds (ESI chapter 9, Fig. S10A–
D†). Notably, in a previous study on the training set, we discov-
ered a higher prevalence of cysteine in active peptides.7,8

However, it was found that cysteine was not essential for
activity.7 In contrast to the de novo peptides found in this
study, such as ICICLK, the non-essential role of cysteine in the

training set can be attributed to the strong self-assembly ten-
dency of peptides with amphiphilic sequence patterns. These
patterns stabilize the structure even after the disulfide bonds
are broken (Fig. S10F†). Therefore, our machine learning
approach successfully extracted the importance of cysteine for
peptide fibril formation and incorporated this information in
the newly found sequences. We showed here that fibrillar
structure formation can be predicted with an accuracy of
∼75% through the combination of open-source aggregation
prediction tools Aggrescan,35 APPNN,32 and PATH.34 We found
that while these algorithms were developed for polypeptides

Fig. 3 (A) Summary of infectivity enhancement and physicochemical properties of de novo predicted peptides (Table S2†). Peptides are incubated
in PBS at 1 mg mL−1 for 1 d at RT before characterization. Absolute HIV-1 infection rates in the presence of EF-C (QCKIKQIINMWQ) and peptides
from ML-prediction at 6.5 µM, 1.3 µM, 0.26 µM and 0 µM (virus only infection). The n-fold infection rates relative to virus only control is shown for
each column. The aggregation into µm-sized colloids was determined by light scattering count rate during zeta-potential measurements. The mole-
cular aggregation into nm-sized fibrils was determined by transmission electron microscopy (TEM, Fig. S6†). Hydrophobicity was calculated accord-
ing to Fauchere hydropathy scale.50 (B–E) TEM showing fibril morphology (scale bar 1 µm) and confocal fluorescence microscopy showing cell-
fibril-colocalization (scale bar 20 µm) of hit peptides (B) HVWCIF, (C) ICICLK, (D) HFICIC, (E) HICLFW. For TEM measurements the peptides were
stained with 4 wt% uranylacetat during preparation. For confocal fluorescence microscopy the fibrils were stained with Proteostat and diluted to
20 µg mL−1 before adding to HeLa cells (40 000/1 cm2) which nucleus was stained with Hoechst 33342. (F) Model describing property–activity cor-
relation for the training set, see ESI Section 4,† applied on newly found peptides (Pearson correlation coefficient R = 0.72).8 The plot shows the
infectivity enhancement of peptides relative to the infectivity enhancement of EF-C in a logarithmic scale. The calculated value is determined by ESI
eqn (3).†
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and proteins, they also perform well for short self-assembling
peptides.

The infectivity enhancement of peptide fibrils occurs due to
improved colocalization of viruses with cell-membrane.4 The
main driving force for this interaction is believed to be electro-
static interactions;7,9,11,43 where positively charged fibrils
sequester negatively charged virions which in turn bind to the
negatively charged cellular membrane. As virion attachment to
the cell membrane is the major rate limiting step during viral
entry, increased numbers of virions at the cell surface result in
higher cell entry and infection rates. However, we here found
that fibrils with a moderately negative zeta-potential can also
increase infectivity. These kinds of fibrils were not included in
the training set and not reported before. We hypothesize that
oversimplification of the fibril–cell-membrane interaction by
reducing it to solely electrostatic interactions can be misleading
since the cell interaction of fibrils is regulated by an intricate
balance between charge and hydrophobicity. For example, the
peptide CQFICR (Fig. 3A) forms fibrils and has a positive zeta-
potential but does not enhance infectivity. The low hydrophobi-
city for CQFICR (0.9) results in less aggregated fibrils and
decreases hydrophobic cell-membrane interaction. Another
example is demonstrated with the hydrophobic peptide FHVWNF
(Fig. 3A), which forms aggregating fibrils with a negative zeta-
potential but does not enhance infectivity due to the contribution
of the strong negative zeta-potential, as supported by our prop-
erty–activity model (Fig. 3F). A further example are fibrils derived
from the immunoglobulin light chain that have a net negative
surface charge and retain virion-binding activity but lack cell-
binding and viral transduction enhancing properties.43 More
recently it has also been shown that cellular protrusions actively
engage EF-C fibril/virion complexes, suggesting that not only
electrostatic interactions may account for bioactivity.44 It is impor-
tant to note that meaningful comparisons of zeta-potential can
only be made among peptides that either form aggregates or do
not form aggregates. This is because the size of colloidal particles
has an influence on the measured zeta-potential.45

Our method demonstrates that moderately negatively
charged peptide fibrils can be active if the hydrophobicity and
aggregation features are both strongly pronounced.
Hydrophobic amino acids such as tryptophan, phenylalanine,
and cysteine can facilitate these desired properties; the con-
tinuous vector representation of peptides successfully extracts
this underlying information by processing sequence and
activity information of the training set without the require-
ment to assume a predetermined set of relevant descriptors as
often done in traditional prediction approaches.46 The pre-
dicted sequences show a higher hydrophobicity, on average,
than reported for the training set (Fig. S11†).

Taken together, our method offers a promising tool to yield
diverse peptide structures, which cannot be created rationally
from derivatives of active compounds or by using conventional
approaches such as sequence–pattern analysis.8,47

Finally, all these newly found active peptides are the short-
est infectivity-enhancing peptides known to us and not found
in any protein databases, which makes them truly de novo.

4 Conclusions

Discovering new supramolecular nanostructures with a desired
bioactivity is challenging due to complex multi-parameter and
multi-scale dependencies. In this work, we report an inverse
design approach by applying a computational pipeline that
includes using a continuous vector representation-based
Machine Learning model, a Monte Carlo sampling, and a final
screening based on charge and aggregation propensity. A
small peptide library, based on derivatives of an active peptide,
was utilized to predict short 6-mer self-assembling peptides
with prospects for their application as transduction enhancers
in basic research and the clinics.

The strength of a continuous vector representation-based
approach is that it can encode sequence and physicochemical
information of a peptide into a numerical vector which can
then be used to train an ML model. Monte Carlo sampling,
using the trained ML model, enables us to screen a large
sequence space in a time- and cost-efficient way and yield de
novo active peptide sequences, which are structure- and prop-
erty-wise very different from the training set. We envision that
our data-driven method will substantially accelerate the early
stages of research by screening large sequence spaces and pre-
dicting de novo peptides starting from a small dataset, which
are unexpected by human experience and rational design.

5 Materials and methods
Materials for peptide characterization

Dimethylsulfoxide (DMSO, ACS reagent, ≥99.9%) was pur-
chased from Honeywell, Riedel-de Haën®. Uranyl acetate was
purchased from Merck. PBS was purchased from Sigma
Aldrich. Proteostat® was purchased from Enzo Life Sciences.
All chemicals were used as received.

Creation of peptide library and synthesis of new peptides

The data on infectivity of a peptide library based on the gp120
derivative enhancing factor C (EF-C) was reported previously
by us.8 The peptides were synthesised according to standard
Fmoc solid phase peptide synthesis and were commercially
obtained Phtd Peptides industrial Co. limited with purity of
≥95% as determined by liquid chromatography mass
spectrometry.

Preparation of peptide fibrils

The peptides were dissolved in DMSO (c = 10 mg mL−1, stored
at 4 °C before usage) and added to PBS buffer to a final incu-
bation concentration of 650 μM or 1 mg mL−1 as indicated in
the text. Other concentrations described in the text were
achieved by further dilution of the peptides.

Physicochemical characterization of peptide fibrils

TEM. 5 µL of peptide fibrils (1 mg mL−1) were placed on
copper grids which were placed on copper grids coated with
carbon and formvar layer (300 mesh, Plano GmbH). After
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10 min incubation time, the grids were staining with 4%
uranyl acetate solution for 2.5 min and washed with water.
Measurements were performed on a Jeol 1400 electron micro-
scope with 120 kV acceleration voltage.

ATR FT-IR. To determine the β-sheet content of peptide
fibrils ATR FT-IR spectroscopy measurements were conducted
by lyophilizing 200 µL of the respective 1 mg mL−1 peptide
solution. All spectra were recorded on a Bruker Tensor 27
spectrometer with a diamond crystal as ATR element (PIKE
Miracle™, spectral resolution 2 cm−1). Every sample was
measured with 64 scans and processed with OriginLab soft-
ware according to a previous report.7

ThT-assay. 4 µL of 1 mg mL−1 peptide fibrils solution is
added to a 20 µL, 50 µM ThT-solution in PBS. The mixture is
incubated for 15 min at RT. For reference PBS containing 10%
DMSO (4 µL) was added instead of peptide fibril solution. The
samples were placed in black UV Star® 384 microliter well-
plates (Greiner bio-one). Fluorescence spectra were recorded
on an Infinite® M1000 PRO microplate reader (Tecan) at eem =
488 nm upon excitation at eex = 440 nm with 10 nm band-
widths and multiple reads per well (3 × 3). Measurements were
repeated in triplicates and averaged with standard deviation. A
peptide fibril was considered as ThT-active if the fluorescence
intensity was at least twice as strong compared to the control.

Zeta-potential. For the determination of the surface charge
of aggregated peptides zeta-potential measurements were con-
ducted with a Zetasizer Nano ZS, Malvern Instruments. Unless
stated otherwise the peptides were dissolved from DMSO
(10 mg mL−1) in PBS (pH 7.4) to concentration of 1 mg mL−1

and incubated for 1d at RT. Just before the measurement the
60 µL of the peptides were further diluted in 600 µL KCl (aq,
1 mM) in a 1 mL disposable folded capillary cells (DTS-1060,
Zetasizer Nano series, Malvern). The zeta-potential of the pep-
tides was derived from the electrophoretic mobility based on
the Smoluchowski formula. All measurements were averaged
in triplicates and reproduced at least once for each sample.

Aggregate analysis. The derived count rate of scattered light
at 633 nm, 173° from the zeta-potential measurement was
used as information on the light scattering intensity and tur-
bidity of the sample as an indicator for microscopic
aggregation.8,48

Virus-peptide interaction

Human wild-type HeLa cell line were obtained from abcam,
ab260075, LOT: GR3292155-1. TZM-bl cell line and R5-tropic
HIV-1 stock plasmid (pBRNL4.39-92TH014) were obtained
from the National Institutes of Health AIDS Research and
Reference Reagent Program as reported earlier.49

R5-tropic HIV-1 stocks and HIV-1 infection assays were pre-
pared analogous to a previous report.7 Briefly, the effect of
peptide fibrils (final concentration on cells 6.5, 1.3, 0.26,
0 µM) on HIV-1 infection was studied via a luminescence assay
for detection of β-galactosidase, which is expressed upon
HIV-1 infection of TZM-bl cells. The HIV-1 infection assay was
conducted in three technical replicates and reproduced at least
once. Note, that n-fold infectivity enhancement of peptides

relative to virus only infection rates are strongly dependant of
initial virus concentration. To compare independent measure-
ments with each other EF-C (QCKIKQIINMWQ) was always
used as a reference peptide. EF-C is the original sequence on
which the training set is based and was applied previously by
us to quantify infection rates.4,7,8

Cell viability was determined after addition of peptides to
TZM-bl cells via the CellTiter-Glo assay. To this end, 10 000
cells were seeded and on the next day serial diluted peptides
were added. After 3 days the supernatant was removed and
100 µL CellTiter-Glo Reagent 1 : 1 diluted in PBS was added.
After 10 min 50 µL was transferred to white microplate and
luminescence was recorded by Orion microplate luminometer.

Confocal laser scanning microscopy studies were performed
for the visualization of the cell-peptide interaction. HeLa cells
were seeded one day prior to conducting the assay (40 000 per
well) in an 8-well IBIDI slide. 4 µL of the preformed peptide
fibrils (1 mg mL−1) were diluted with 4 µL Proteostat (Enzo
Life Science, 1 µL stock in 999 µL PBS) and further diluted
with medium to receive a final peptide concentration of 20 µg
mL−1. The nucleus of the HeLa cells was stained with Hoechst
33342 (NucBlue™, Thermo Fisher Scientific). The peptide
solution mixture was transferred to the HeLa cells and incu-
bated for 30 min at 37 °C before washing three times with PBS.
The interaction of fibril clusters with cells was monitored after
30 min incubation time on a Stellaris 8 confocal laser scan-
ning microscope (Leica) equipped with a 20× air objective and
laser excitation wavelength of 405 nm (Hoechst) and 561 nm
(Proteostat).

Calculation of hydrophobicity and net charge

Net charge. The net charge of a peptide was calculated at pH
7.4 and the EMBOSS pKscale.

Hydrophobicity. The calculation of the hydrophobicity is
based on experimental based on water–octanol partition coeffi-
cients of amino acids according to Fauchere50 hydropathy
scale. The calculation of the net charge and hydrophobicity
were conducted via the “peptides” package in R.51

Details of computational pipeline

Machine learning. A peptide library consisting of 163
sequences derived from EF-C (QCKIKQIINMWQ), which was
previously reported by us (Table S1†),8 was used as the training
set for the ML model. To this end, each peptide of the training
set was represented as 100-dimensional numerical vectors
(ProtVecs) by summing up ProtVecs of their constituent
3-grams (comprising 3 consecutive amino acid) as outlined by
Asgari and Mofrad.26 Scikit-learn was used to train and cross-
validate LASSO and RIDGE regression models that connected
the ProtVecs to the experimentally determined infectivity of
the peptides.

Metropolis criterion. To sample the vast sequence space of
the 6-mers, we used a MC method as described in the Results
section. At each MC step, we generated a new peptide
sequence by randomly changing one amino acid of the old
peptide from the previous step and computed the infectivity of
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the old and new peptides using the trained ProtVec LASSO
model (ESI eqn (1)†). We denote the infectivity of an old and a
new peptide sequence I0 and In, respectively. Following the
standard Metropolis protocol, we accept the Monte Carlo move
under the acceptance criterion

acc 0 ! nð Þ ¼ 1; In � I0 � 0
exp In�Io

t

� �
; In � I0 , 0

�

where t denotes the reduced temperature (set to 1 throughout).
The Metropolis criterion is evaluated by comparing the second
term to a uniformly distributed random number in the interval
[0, 1).

All code and data used for ML and MC analysis are openly
available at https://gitlab.com/arghyadutta/seq-to-infect.

Data visualization

Sequence plot. To visualize the amino acid frequency in the
peptide library the sequence logo generator tool WebLogo52

was applied. The sequence plot shows the amino acid fre-
quency in the first seven positions starting from the
N-terminus of the library or the first 6 positions starting from
the N-terminus of the ML-generated peptides. All sequences of
the library shorter than 7 AA (14 out of 163 peptides) were
excluded for this visualization. The color code represents
amino acid side chain hydrophobicity and charge categoriz-
ation according to Kyte–Doolittle hydropathy scale. Green rep-
resents hydrophilic positive charge, yellow hydrophobic no
charge, purple hydrophilic no charge and red hydrophilic
negative charge.

t-SNE plot. For the visualization of sequence similarities in
the library and the predicted peptides dimensionality
reduction approach t-SNE (t-distributed stochastic neighbor
embedding) was applied. To this end, the sequences were vec-
torized by linear vector addition of 3-mer ProtVec vector
embeddings. The 100-d vector embeddings were applied as
features in t-SNE, which was operated in the data analysis soft-
ware Orange3 (V. 3.26.0)53 with the following conditions:
Perplexity 30, exaggeration 1, PCA components 20, normalized
data. The parameters were selected empirically after testing
several conditions for displaying distinct clusters.
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